C. Hureau, E. Anxolabéhère-Mallart, G. Blondin, E. Rivière, M. Nierlich
FULL PAPER
[4]
[37] T. J. Collins, R. D. Powell, C. Slebodnick, E. S. Uffelman, J.
Am. Chem. Soc. 1990, 112, 899–901.
V. V. Barynin, M. M. Whittaker, S. V. Antonyuk, V. S. Lamzin,
P. M. Harrison, P. J. Artymiuk, J. W. Whittaker, Structure 2001,
9, 725–738.
V. K. Yachandra, K. Sauer, M. P. Klein, Chem. Rev. 1996, 96,
2927–2950.
A. W. Rutherford, P. Faller, Trends Biochem. Sci. 2001, 26, 341–
344.
V. K. Yachandra, Philos. Trans. R. Soc. London, Ser. B 2002,
357, 1347–1358.
[38] T. J. Collins, S. W. Gordon-Wylie, J. Am. Chem. Soc. 1989, 111,
[5]
[6]
[7]
4511–4513.
[39] D. Feichtinger, D. A. Plattner, Chem. Eur. J. 2001, 7, 591–599.
[40] D. Feichtinger, D. A. Plattner, Angew. Chem. Int. Ed. Engl.
1997, 36, 1718–1719.
[41] J. El-Bahraoui, O. Wiest, D. Feichtinger, D. A. Plattner, Angew.
Chem. Int. Ed. 2001, 40, 2073–2076.
[42] D. Feichtinger, D. A. Plattner, J. Chem. Soc., Perkin Trans. 2
2000, 1023–1028.
[43] M. Hirotsu, M. Kojima, W. Mori, Y. Yoshikawa, Bull. Chem.
Soc. Jpn. 1998, 71, 2873–2884.
[44] M. Hirotsu, M. Kojima, Y. Yoshikawa, Bull. Chem. Soc. Jpn.
1997, 70, 649–657.
[45] X. Li, D. P. Kessissoglou, M. L. Kirk, C. J. Bender, V. L. Pecor-
aro, Inorg. Chem. 1988, 27, 1–3.
[46] D. P. Kessissoglou, M. L. Kirk, C. A. Bender, M. S. Lah, V. L.
Pecoraro, J. Chem. Soc., Chem. Commun. 1989, 84–86.
[47] D. P. Kessissoglou, M. L. Kirk, M. S. Lah, X. Li, C. Raptopou-
lou, W. E. Hatfield, V. L. Pecoraro, Inorg. Chem. 1992, 31,
5424–5432.
[48] V. Tangoulis, D. A. Malamatari, K. Soulti, V. Stergiou, C. P.
Raptopoulou, A. Terzis, T. A. Kabanos, D. P. Kessissoglou, In-
org. Chem. 1996, 35, 4974–4983.
[49] V. Tangoulis, D. A. Malamatari, G. A. Spyroulias, C. P. Rapto-
poulou, A. Terzis, D. P. Kessissoglou, Inorg. Chem. 2000, 39,
2621–2630.
[50] C. Hureau, L. Sabater, E. Anxolabéhère-Mallart, M. Nierlich,
M.-F. Charlot, F. Gonnet, E. Rivière, G. Blondin, Chem. Eur.
J. 2004, 10, 1998–2010.
[51] S. Pal, J. W. Gohdes, W. C. A. Wilisch, W. H. Armstrong, Inorg.
Chem. 1992, 31, 713–716.
[52] K. Wieghardt, U. Bossek, L. Zsolnai, G. Huttner, G. Blondin,
J.-J. Girerd, F. Babonneau, J. Chem. Soc., Chem. Commun.
1987, 651–653.
[53] O. Horner, E. Anxolabéhère-Mallart, M.-F. Charlot, L. Tchert-
anov, J. Guilhem, T. A. Mattioli, A. Boussac, J.-J. Girerd, Inorg.
Chem. 1999, 38, 1222–1232.
[54] J. Yoo, A. Yamaguchi, M. Nakano, J. Krzystek, W. E. Streib,
L.-C. Brunel, H. Ishimoto, G. Christou, D. N. Hendrickson,
Inorg. Chem. 2001, 40, 4604–4616.
[8]
[9]
A. W. Rutherford, A. Boussac, Science 2004, 303, 1782–1784.
P. Joliot, G. Barbieri, R. Chabaud, Photochem. Photobiol. 1969,
10, 309–329.
B. Kok, B. Forbush, M. McGloin, Photochem. Photobiol. 1970,
11, 457–475.
K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S.
Iwata, Science 2004, 303, 1831–1838.
J. Biesiadka, B. Loll, J. Kern, K.-D. Irrgang, A. Zouni, Phys.
Chem. Chem. Phys. 2004, 6, 4733–4736.
J. P. McEvoy, G. W. Brudvig, Phys. Chem. Chem. Phys. 2004,
6, 4754–4763.
P. E. M. Siegbahn, R. H. Crabtree, J. Am. Chem. Soc. 1999,
121, 117–127.
P. E. M. Siegbahn, Inorg. Chem. 2000, 39, 2923–2935.
P. E. M. Siegbahn, Curr. Opin. Chem. Biol. 2002, 6, 227–235.
J. S. Vrettos, J. Limburg, G. W. Brudvig, Biochim. Biophys. Acta
2001, 1503, 229–245.
V. L. Pecoraro, M. J. Baldwin, M. T. Caudle, W.-Y. Hsieh,
N. A. Law, Pure Appl. Chem. 1998, 70, 925–929.
E. M. McGarrigle, D. G. Gilheany, Chem. Rev. 2005, 105,
1563–1602.
V. C. Quee-Smith, L. DelPizzo, S. H. Jureller, J. L. Kerschner,
R. Hage, Inorg. Chem. 1996, 35, 6461–6465.
D. De Vos, T. Bein, Chem. Commun. 1996, 917–918.
A. Berkessel, C. A. Sklorz, Tetrahedron Lett. 1999, 40, 7965–
7968.
J. Brinksma, L. Schmieder, G. Van Vliet, R. Boaron, R. Hage,
D. E. De Vos, P. L. Alsters, B. L. Feringa, Tetrahedron Lett.
2002, 43, 2619–2622.
C. Zondervan, R. Hage, B. L. Feringa, Chem. Commun. 1997,
419–420.
K. Srinivasan, P. Michaud, J. K. Kochi, J. Am. Chem. Soc.
1986, 108, 2309–2320.
R. Hage, J. E. Iburg, J. Kerschner, J. H. Koek, E. L. M. Lem-
pers, R. J. Martens, U. S. Racherla, S. W. Russell, T. Swarthoff,
M. R. P. van Vliet, J. B. Warnaar, L. van der Wolf, B. Krijnen,
Nature 1994, 369, 637–639.
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[55] A. Yoshino, T. Miyagi, E. Asato, M. Mikuriya, Y. Sakata, K.-
i. Sugiura, K. Iwasaki, S. Hino, Chem. Commun. 2000, 1475–
1476.
[56]
H. Diril, H.-R. Chang, X. Zhang, S. K. Larsen, J. A. Potenza,
C. G. Pierpont, H. J. Schugar, S. S. Isied, D. N. Hendrickson,
J. Am. Chem. Soc. 1987, 109, 6207–6208.
[27]
[28]
[29]
T. Tzedakis, Y. Benzada, M. Comtat, Ind. Eng. Chem. Res.
2001, 40, 3435–3444.
[57]
A. Neves, S. M. D. Erthal, I. Vencato, A. S. Ceccato, Y. P. Mas-
carenhas, O. R. Nascimento, M. Hörner, A. A. Batista, Inorg.
Chem. 1992, 31, 4749–4755.
W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen, J. Am.
Chem. Soc. 1990, 112, 2801–2803.
H2salen = N,NЈ-bis(salicylidene)ethane-1,2-diamine, H2salpn =
N,NЈ-bis(salicylidene)propane-1,3-diamine, H2py-salpn = N-(2-
pyridylmethyl)-N,NЈ-bis(2-hydroxybenzyl)propane-1,3-diamine.
A. J. Wu, J. E. Penner-Hahn, V. L. Pecoraro, Chem. Rev. 2004,
104, 903–938.
A. Gelasco, M. L. Kirk, J. W. Kampf, V. L. Pecoraro, Inorg.
Chem. 1997, 36, 1829–1837.
M. J. Baldwin, V. L. Pecoraro, J. Am. Chem. Soc. 1996, 118,
11325–11326.
N. Aurangzeb, C. E. Hulme, C. A. McAuliffe, R. G. Pritchard,
M. Watkinson, M. R. Bermejo, A. Garcia-Deibe, M. Rey, J.
Sanmartin, A. Sousa, J. Chem. Soc., Chem. Commun. 1994,
1153–1155.
A. Gelasco, S. Bensiek, V. L. Pecoraro, Inorg. Chem. 1998, 28,
3301–3309.
F. M. MacDonnell, N. L. P. Flacker, C. Stern, T. V. O’Hallo-
ran, J. Am. Chem. Soc. 1994, 116, 7431–7432.
E. J. Larson, V. L. Pecoraro, J. Am. Chem. Soc. 1991, 113,
7809–7810.
[58]
[59]
[60]
J. A. Bonadies, M. J. Maroney, V. L. Pecoraro, Inorg. Chem.
1989, 28, 2044–2051.
C. Hureau, E. Anxolabéhère-Mallart, M. Nierlich, F. Gonnet,
E. Rivière, G. Blondin, Eur. J. Inorg. Chem. 2002, 2710–2719.
T. S. Davis, J. P. Fackler, M. J. Weeks, Inorg. Chem. 1968, 7,
1994–2002.
[30]
[31]
[32]
[33]
[61]
[62]
R. Dingle, Acta Chem. Scand. 1966, 20, 33–44.
E1/2 is defined as (EP + EPc)/2 and ΔEP = |EP – EPc|, where
a
a
EPa (EPc) is defined as the potential of the maximum of current
intensity when scanning toward anodic (cathodic) potentials.
See ref. and references cited therein.
J.-J. Girerd, E. Anxolabéhère-Mallart, in Spectroscopic Meth-
ods in Bioinorganic Chemistry, Vol. 14 (Eds.: E. I. Solomon,
K. O. Hodgson), American Chemical Society, Washington DC,
1998, pp. 262–271.
[57]
[63]
[64]
[34]
[35]
[36]
[65]
[66]
P. K. Pal, S. Chowdhury, M. G. B. Drew, D. Datta, New J.
Chem. 2002, 26, 367–371.
D. P. Kessissoglou, X. Li, W. M. Butler, V. L. Pecoraro, Inorg.
Chem. 1987, 26, 2487–2492 and references cited therein.
4816
www.eurjic.org
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2005, 4808–4817