3
Table 2. Asymmetric Aerobic Dearomatizing Spirocyclization of
Porco Jr. Angew. Chem., Int. Ed. 2011, 50, 4068. g) A. E.
Williamson, M. J. Gaunt in Asymmetric Synthesis II: More
Methods and Applications, eds. by M. Christmann, S. Bräse,
Wiley-VCH, Weinheim, 2012, Chap. 48, pp. 383–390. h) Q. Yang,
C. Draghici, J. T. Njardarson, F. Li, B. R. Smith, P. Das, Org.
Biomol. Chem. 2014, 12, 330. i) M. Nakada, Chem. Rec., 2014, 14,
641.
a) T. Dohi, A. Maruyama, N. Takenaga, K. Senami, Y. Minamitsuji,
H. Fujioka, S. B. Cämmerer, Y. Kita, Angew. Chem., Int. Ed. 2008,
47, 3787. b) T. Dohi, N. Takenaga, T. Nakae, Y. Toyoda, M.
Yamasaki, M. Shiro, H. Fujioka, A. Maruyama, Y. Kita, J. Am.
Chem. Soc. 2013, 135, 4558.
a
Unsymmetrical Methylenebis(arenol)s
R1
R1
R1
OH
1b (8 mol%)
O
+
2
O
O
*
toluene, 90 ˚C,
air, 24h
OH
3
O
6
R2
R2
R2
3
2
5
4
4
3
4
a) M. Uyanik, T. Yasui, K. Ishihara, Angew. Chem., Int. Ed. 2010,
49, 2175. b) M. Uyanik, T. Yasui, K. Ishihara, Tetrahedron 2010,
66, 5841. c) Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem., Int.
Ed. 2013, 52, 9215.
a) H. Liang, M. A. Ciufolini, Angew. Chem. Int. Ed. 2011, 50,
11849. b) A. Parra, S. Reboredo, Chem. Eur. J. 2013, 17244. c)
Uyanik, M. Ishihara, K. J. Synth. Org. Chem. 2012, 70, 1116. d) F.
Berthiol, Synthesis 2015, 47, 587. e) T. Dohi, Y. Kita, in Iodine
Chemistry and Applications, ed. by T. Kaiho, Wiley, Hoboken,
2015, Chap. 48, pp. 103–157. f) in Hypervalent Iodine Chemistry
Preparation, Structure and Synthetic Applications of Polyvalent
Iodine Compounds; ed. by V. V. Zhdankin, Wily, Chichester, 2014,
Chap. 4, pp. 337–380.
a) M. Uyanik, N. Sakakura, E. Kaneko, K. Ohori, K. Ishihara,
Chem. Lett. 2014, 44, 179. b) M. Uyanik, N. Sasakura, E.
Kuwahata, Y. Ejima, K. Ishihara, Chem. Lett. 2014, 44, 381.
T. Oguma, T. Katsuki, J. Am. Chem. Soc. 2012, 134, 20017.
T. Oguma, T. Katsuki, Chem. Commun. 2014, 50, 5053.
R. Irie, T. Uchida, K. Matsumoto, Chem. Lett. 2015, 44, 1268.
Related iron(salan) catalysis involving the radical cation species,
see; a) H. Egami, T. Katsuki, J. Am. Chem. Soc. 2009, 131, 6082.
b) H. Egami, K. Matsumoto, T. Oguma, T. Kunisu, T. Katsuki, J.
Am. Chem. Soc. 2010, 132, 13633. c) K. Matsumoto, H. Egami, T.
Oguma, T. Katsuki, Chem. Commun. 2012, 48, 5823. d) T. Kunisu,
T. Oguma, T. Katsuki, J. Am. Chem. Soc. 2011, 133, 12937.
a) K. Manabe, N. Aoyama, S. Kobayashi, Adv. Synth. Catal. 2001,
343, 174. b) K. A. Jørgensen, Synthesis 2003, 1117.
For diastereoselective synthesis of this class of ketones, see; a) D. J.
Bennett, F. M. Dean, G. A. Herbin, D. A. Matkin, A. W. Price, M.
L. Robinson, J. Chem. Soc., Perkin Trans. 1 1980, 1978. b) F. M.
Dean, G. A. Herbin, G. A.; Matkin, D. A.; Price, A. W.; Robinson,
M. L. J. Chem. Soc., Perkin Trans. 1 1980, 1986. b) T. R. Kasturi,
B. Rajashekhar, G. J. Raju, G. M. Reddy, R. Sivaramakrishnan, N.
Ramasubbu, K. Venkatesan, K. J. Chem. Soc., Perkin Trans. 1
1984, 2375. c) A. Alizadeh, M. Khodaei, K. Moradi, J. Iran. Chem.
Soc. 2010, 7, 351. d) A. Khoramadadi–zad, A. Shiri, F.
Derakhshan–Panah, Z. Slimi, Mol. Divers. 2010, 14, 829.
a) A. Albert, Nature 1953, 172, 201. b) G. Appendino, M. Ottino,
N. Marquez, F. Bianchi, A. Giana, M. Ballero, O. Sterner, B. L.
Fiebich, E. Munoz, J. Nat. Prod. 2007, 70, 608. c) A. Albert,
Nature 1953, 172, 201. d) G. M. Fu, B. Y. Yu, D. N. Zhu, J. Asian
Nat. Prod. Res. 2006, 8, 149.
1
2
b
c
entry
sub.
R
R
yield (%)
ee (%)
1
2
2b
2c
H
Br
H
H
81d
75
87d
79
3
4
2d
2e
2f
I
H
66
89
78
88
88d
81d
64
88
87
88
84
76e
87
Ph
Me
Me
Me
Me
Me
H
5
5-Me
5-Cl
5-Br
5-NO2
3,5-F2
6
2g
2h
2i
85e
7
81d(R)f
87d
8
5
9
2j
87
85e
82e
77e
10
11
2k
2l
Me 3,5-Cl2
Me 3,5-Br2
6
7
8
9
12
2m
Me
3-Ph
a
Reactions were run on a 0.4 mmol scale using 8 mol% of
iron(salan) 1 under air at 90 ˚C for 24h, unless otherwise noted.
Determined by HPLC analysis on a chiral
stationary phase column. See ref. 18. After recrystallization
>99% ee obtained. Absolute configuration was determined on the
basis on its X-ray crystallographic analysis; see ref. 7.
b
c
Isolated yield.
d
e
f
10
11
In summary, we have developed iron(salan)-catalyzed
asymmetric
aerobic
oxidative
dearomatization
spirocyclization of methylenebis(arenol)s, which could be
simply prepared from the corresponding 2-naphthols and
salicyl alcohols under MW irradiation. The oxidative
spirocyclization allows the transformation of various
functionalized methylenebis(arenol)s into spirocyclic ketones
with good enantioselectivity. We believe that this study
expands the utility of the asymmetric aerobic oxidation of
phenols with chiral iron complexes.
12
13
This study was supported from JSPS KAKENHI Grant
Number JP16H01033 in Precisely Designed Catalysts with
Customized Scaffolding; Nissan Chemical Industries, Ltd; the
International Institute for Carbon-Neutral Energy Research
(WPI-I2CNER) from MEXT, Japan, is gratefully
acknowledged. Takuya Oguma is grateful for the JSPS
Research Fellowships for Young Scientists.
a) C.–J. Widén, C. R. Fraser–Jenkins, M. Lounasmaa, J. V. Euw, T.
Reichstein, Helv. Chim. Acta 1973, 56, 831. b) G. H. Hakimelahi,
A. A. Moshfegh, Helv. Chim. Acta 1981, 64, 599. c) A. A.
Moshfegh, B. Mazandarani, A. Nahid, G. H. Hakimelahi, Helv.
Chim. Acta 1982, 65, 1229. d) V. Böhmer, F. Marschollek, L. Zetta,
J. Org. Chem. 1987, 52, 3200. e) D. Kraft, R. Cacciapaglia, V.
Böhmer, A. A. El–Fadl, S. Harkema, L. Mandolini, D. N.
Reinhoudt, W. Verboom, W. Vogt, J. Org. Chem. 1992, 57, 826.
G. Casiraghi, G. Casnati, A. Pochini, G. Puglia, R. Ungaro, G.
Sartori, Synthesis 1981, 143.
¶
Professor Tsutomu Katsuki passed away unexpectedly on
14
15
16
17
October 30, 2014.
A. Khakafi–Nezhad, M. N. S. Rad, G. H. Hakimelahi, Helv. Chim.
Acta 2003, 86, 2396.
Supporting Information is also available electronically on the CSJ-
The reaction at 60 ˚C for 10h using 1a as a catalyst gave the
desired product with 5% yield. The reaction at 90 ˚C for 48h using
1a as a catalyst gave the desired product with 78% yield and 77%
ee.
References and Notes
1
Reviews on oxidative dearomatization; a) D. Magdziak, S. J. Meek,
T. R. R. Pettus, Chem. Rev. 2004, 104, 1383. b) F. L. Ortiz, M. J.
Iglesias, I. Fernández, C. M. Andújar Sánchez, G. R. Gómez,
Chem. Rev. 2007, 107, 1580. c) S. Quideau, L. Pouységu, D.
Deffieux, Synlett 2008, 467. d) A. R. Pape, K. P. Kaliappan, E. P.
Kündig; Chem. Rev. 2010, 100, 2917. e) L. Pouységu, D. Deffieux,
S. Quideau, Tetrahedron 2010, 66, 2235. f) S. P. Roche, J. A.
18
The yields and ees in previous tandem strategy (see ref.7): 2b (86%
yield, 91% ee), 2h (89% yield, 89% ee), 2i (85% yield, 85% ee).