3
13. Keylor, M. H.; Park, J. E.; Wallentin, C.-J.; Stephenson, C. R.
J. Tetrahedron 2014, 70, 4264.
In conclusion, we have developed a convenient and highly
regioselective synthesis of sulfides from readily available and
diversified olefins and thiols. The present radical thiol-ene
reaction utilizes visible light as the greenest energy source
and benzophenone as an inexpensive organophotocatalyst to
afford sulfides in good to excellent yields and high purity at
ambient temperature. The protocol is metal-and oxidant-free,
operationally simple and compatible with a variety of functional
groups in both the reaction partners.
14. (a) Srivastava, V. P.; Yadav, A. K.; Yadav, L. D. S. Synlett 2014,
25, 665; (b) Yadav, A. K.; Srivastava, V. P.; Yadav, L. D. S.
RSC Adv. 2014, 4, 4181; (c) Yang, X.-J.; Chen, B.; Zheng, L.-
Q.; Wu, L.-Z.; Tung, C.-H. Green Chem. 2014, 16, 1082; (d)
Teo, Y. C.; Pan, Y.; Tan, C. H. ChemCatChem 2013, 5, 235; (e)
Yang, D.-T.; Meng, Q.-Y.; Zhong, J.-J.; Xiang, M.; Liu, Q.;
Wu L.-Z. Eur. J. Org. Chem. 2013, 7528; (f) Hari, D. P.; Hering,
T.; Konig, B. Org. Lett. 2012, 14, 5334; (g) Zou, Y.-Q.; Chen,
J.-R.; Liu, X.-P.; Lu, L.-Q.; Davis, R. L.; Jorgensen, K. A.;
Xiao, W.-J. Angew. Chem. Int. Ed. 2012, 51, 784; (h) Fidaly, K.;
Ceballos, C.; Falguieres, A.; Veitia, M. S.-I. Guy, A.; Ferroud,
C. Green Chem. 2012, 14, 1293; (i) Neumann, M.; Fuldner, S.;
Konig, B.; Zeitler, K. Angew. Chem. Int. Ed. 2011, 50, 951; (j)
Hari, D.; Konig, P. B. Org. Lett. 2011, 13, 3852.
Acknowledgments
We sincerely thank the SAIF, Punjab University, Chandigarh,
for providing spectra. M.S. is grateful to the UGC, New Delhi,
for a research fellowship.
15. (a) Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135,
17494. For reviews, see: (b) Bach, T.; Hehn, J. P. Angew.
Chem. Int. Ed. 2011, 50, 1000; (c) Hoffmann, N. Chem. Rev.
2008, 108, 1052; (d) Fagnoni, M.; Dondi, D.; Ravelli, D.;
Albini, A. Chem. Rev. 2007, 107, 2725.
Supplementary data
16. (a) Yadav, A. K.; Yadav, L. D. S. Tetrahedron Lett. 2017, 58,
552; (b) Yadav, A. K.; Yadav, L. D. S. Chem. Commun. 2016,
52, 10621.
Supplementary data associated with this article can be found,
in the online version, at doi…
17. Movassagh, B.; Navidi, M. ARKIVOC 2008 (xv) 47.
18. (a) Yadav, V. K.; Srivastava, V. P.; Yadav, L. D. S. Tetrahedron
Lett. 2016, 57, 155; (b) Yadav, V. K.; Srivastava, V. P.; Yadav,
L. D. S. Tetrahedron Lett. 2016, 57, 2502; (c) Yadav, A. K.;
Yadav, L. D. S. Tetrahedron Lett. 2015, 56, 686; (d) Yadav, A.
K.; Yadav, L. D. S. Green Chem. 2015, 17, 3515; (e) Singh, A.
K.; Chawla, R.; Yadav, L. D. S. Tetrahedron Lett. 2015, 56, 653;
(f) Kapoorr, R.; Singh, S. N.; Tripathi, S.; Yadav, L. D. S.
Synlett 2015, 26, 2101; (g) Keshari, T.; Yadav, V. K.;
Srivastava, V. P.; Yadav, L. D. S. Green Chem. 2014, 16, 3986;
(h) Srivastava, V. P.; Yadav, A. K.; Yadav, L. D. S. Tetrahedron
Lett. 2014, 55, 1788; (i) Srivastava, V. P.; Yadav, A. K.; Yadav,
L. D. S. Synlett 2014, 25, 625; (j) Yadav, A. K.; Yadav, L. D.
S. Terrahedron Lett. 2014, 56, 6696; (k) Yadav, A. K.; Yadav,
L. D. S. Tetrahedron Lett. 2014, 55, 2065; (l) Yadav, A. K.;
Srivastava, V. P.; Yadav, L. D. S. RSC Adv. 2014, 4, 24498;
(m) Yadav, A. K.; Srivastava, V. P.; Yadav, L. D. S. New J.
Chem. 2013, 37, 4119; (n) Srivastava, V. P.; Yadav, L. D. S.
Synlett 2013, 24, 465; (o) Srivastava, V. P.; Yadav, L. D. S.
Synlett 2013, 24, 2758.
References and notes
1. Posner, T. Ber. Dtsch.Chem. Ges. 1905, 38, 646.
2. Gress, A.; Volkel, A.; Schlaad, H. Macromolecules 2007, 40,
7928.
3. (a) Clayden, J.; MacLellan, P. Beilstein J. Org. Chem. 2011, 7,
582; (b) Jacob, C. Nat. Prod. Rep. 2006, 23, 851; (c) Parry, J.
R. Tetrahedron 1983, 39, 1215.
4. (a) Hoyle, C. E.; Lowe, A. B.; Bowman, C. N. Chem. Soc. Rev.
2010, 39, 1355; (b) Hoyle, C. E.; Bowman, C. N. Angew.
Chem. Int. Ed. 2010, 49, 1540; (c) Lowe, A. B. Polym. Chem.
2010, 1, 17; (d) Kade, M. J.; Burke, D. J.; Hawker, C. J. J.
Polym. Sci. Part A: Polym. Chem. 2010, 48, 743; (e) Lowe, A.
B.; Harvison, A. M. Aust. J. Chem. 2010, 63, 251; (f) Hoyle,
C. E.; Lee, T. Y.; Roper, T. J. Polym. Sci. Part A: Polym.
Chem. 2004, 42, 5301.
5. (a) Gómez, R. A.; Carretero, J. C. Chem. Commun. 2011, 47,
2207; (b) McGarrigle, E. M.; Myers, E. L.; Illa, O.; Shaw, M.
A.; Riches, S. L.; Aggarwal, V. K. Chem. Rev. 2007, 107,
5841.
19. General procedure for the synthesis of sulfides 3: A mixture of
olefin 1 (1 mmol), benzophenone (10 mol%), thiol 2 (1 mmol)
and nitrile (3 mL) was stirred at rt under N2 atmosphere and
irradiation with visible light ( 18 W compact fluorescent lamp)
for 12-18 h ( Table 2). After completion of reaction (monitored
by TLC), water (5 mL) was added and the mixture was
extracted with ethyl acetate (3 × 5 mL). The combined organic
6. (a) Finn, M. G.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1231;
(b) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem.
Int. Ed. 2001, 40, 2004.
7. (a) Hoyle, C. E.; Lowe, A. B.; Bowman, C. N. Chem. Soc.
Rev. 2010, 39, 1355; (b) Kharasch, M. S.; Read, A. T.; Mayo,
F. R. Chem. Ind. 1938, 57, 752; (c) Posner, T. Ber. 1905, 38,
646.
phase was dried over anhydrous Na2SO4, filtered
evaporated under reduced pressure. The resulting crude
product was purified by silica gel chromatography using
and
8. For reviews, see: (a) Hoyle, C. E.; Bowman, C. N. Angew.
Chem. Int. Ed. 2010, 49, 1540; (b) Sletten, E.; Bertozzi, C. R.
Angew. Chem. Int. Ed. 2009, 48, 6974; (c) Hoyle, C. E.; Lee,
T. Y.; Roper, T. J. Polym. Sci. Part A: Polym.Chem. 2004, 42,
5301.
a
mixture of hexane/ethyl acetate (4:1) as eluent to afford an
analytically pure sample of product 3 . All the compounds 3 are
known and were characterized by comparison of their spectral
data with those reported in the literature.12b,20 Characterization
data of representative compounds 3 are given below:
Compound 3a:20a 1H NMR (300 MHz, CDCl3) δ: 7.45-7.40 (m,
2H), 7.38-7.31 (m, 4H), 7.29-7.23 (m, 4H), 3.28-3.22 (m, 2H),
3.00-2.99 (m, 2H) 13C NMR (75.4 MHz, CDCl3), δ: 140.8,
136.7, 129.7, 129.3, 128.9, 128.5, 126.8, 126.3, 36.1,35.6;
HRMS (EI): calcd for C14H14S 214.0816, found 214.0812.
Compound 3i:20a 1H NMR (300 MHz, CDCl3) δ: 7.47-7.23 (m,
7H), 7.16 (m, 2H), 3.29-3.19 (m, 2H), 2.99-2.92 (m, 2H); 13C
NMR (75.4 MHz, CDCl3) δ: 138.6, 136.3, 132.1, 131.4, 130.0,
129.5, 129.0, 128.5, 35.1, 34.8; HRMS (EI): calcd for
C14H13ClS 248.0427, found 248.0430.
Compound 3m:20a 1H NMR (300 MHz, CDCl3) δ: 7.65 (d, J
=7.3 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.48 (t, J = 7.3 Hz, 2H),
7.40-7.28 (m, 5H), 7.16 (d, J=7.9 Hz, 2H), 3.26-3.19 (m, 2H ),
3.05-2.95 (m, 2H ), 2.40 (s, 3H ); 13C NMR (75.4 MHz, CDCl3)
δ: 141.3, 139.9, 136.7,135.3,134.5, 133.4, 132.8, 130.7, 130.2,
129.5, 129.1, 127.7, 127.5, 127.3, 36.3, 35.7, 21.6; HRMS (EI):
calcd for C21H20S 304.1286, found 304.1283.
9. (a) Noble, A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014,
136, 11602; (b) Terrett, J. A.; Clift, M. D.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2014, 136, 6858; (c) Pirnot, M. T.;
Rankic, D. A.; Martin, D. B. C.; MacMillan, D. W. C. Science
2013, 339, 1593; (d) Nagib, D. A.; Scott, M. E.; MacMillan, D.
W. C. J. Am. Chem. Soc. 2009, 131, 10875; (e) Nicewicz, D.
A.; MacMillan, D. W. C. Science 2008, 322, 77.
10. (a) Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 14604; (b)
Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am.
Chem. Soc. 2008, 130, 12886.
11. (a) Konieczynska, M. D.; Dai, C.; Stephenson, C. R. J. Org.
Biomol. Chem. 2012, 10, 4509; (b) Dai, C.; Narayanam, J. M.
R.; Stephenson, C. R. J. Nat. Chem. 2011, 3, 140; (c) Condie,
A. G.; Gonzâlez-Gólez, J. C.; Stephenson, C. R. J. J. Am.
Chem. Soc. 2010, 132, 1464; (d) Tucker, J. W.; Narayanam, J.
M. R.; Krabbe, S. W.; Stephenson, C. R. J. Org. Lett. 2010,
12, 368; (e) Narayanam, J. M. R.; Tucker, J. W.; Stephenson,
C. R. J. J. Am. Chem. Soc. 2009, 131, 8756.
12. (a) Tyson, E. L.; Niemeyer, Z. L.; Yoon, T. P. J. Org. Chem.
2014, 79, 1427; (b) Tyson, E. L.; Ament, M. S.; Yoon, T. P. J.
Org. Chem. 2013, 78, 2046.
20. (a) Kumar, R.; Saima; Shard, A.; Andhare, N. H.; Richa;
Sinha, A. K. Angew. Chem. Int. Ed. 2015, 54, 828; (b)