7086
S. E. Choi, M.K.H. Pflum / Bioorg. Med. Chem. Lett. 22 (2012) 7084–7086
substituted on the C2 and C3 positions (Fig. 1),16 the data suggest
that the linker region of HDAC inhibitors, particularly near the
capping group, is an interesting yet underexplored area of future
drug design.
100
80
60
40
20
0
HDAC1
HDAC3
HDAC6
Acknowledgments
We thank the National Institute of Health (GM067657) and
Wayne State University for funding, S.V.W. Weerasinghe, P. P.
Das, B. B. Parida, and Z. Wu for technical assistance, and G. Padige
and M. Wambua for comments on the manuscript.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Gregoretti, I. V.; Lee, Y. M.; Goodson, H. V. J. Mol. Biol. 2004, 338, 17.
2. Grozinger, C. M.; Schreiber, S. L. Chem. Biol. 2002, 9, 3.
3. Yoo, C. B.; Jones, P. A. Nat. Rev. Drug Disc. 2006, 5, 37.
4. Grant, S.; Easley, C.; Kirkpatrick, P. Vorinostat. Nat. Rev. Drug Discov. 2007, 6, 21.
5. Khabele, D.; Son, D. S.; Parl, A. K.; Goldberg, G. L.; Augenlicht, L. H.; Mariadason,
J. M.; Rice, V. M. Cancer Biol. Ther. 2007, 6, 795.
2a
2b
2c
2d
SAHA
Methyl
Phenyl
t-Butyl
2-Ethylhexyl
Figure 2. Screen of C6-SAHA analogs against HDAC1, HDAC3, and HDAC6 with
6. Song, J.; Noh, J. H.; Lee, J. H.; Eun, J. W.; Ahn, Y. M.; Kim, S. Y.; Lee, S. H.; Park, W.
S.; Yoo, N. J.; Lee, J. Y.; Nam, S. W. APMIS 2005, 113, 264.
125 nM SAHA, 500 nM 2a, 2b, and 2d, and 2 lM 2c.
7. Bartling, B.; Hofmann, H. S.; Boettger, T.; Hansen, G.; Burdach, S.; Silber, R. E.;
Simm, A. Lung Cancer 2005, 49, 145.
8. Krennhrubec, K.; Marshall, B. L.; Hedglin, M.; Verdin, E.; Ulrich, S. M. Bioorg.
Med. Chem. Lett. 2007, 17, 2874.
Table 2
IC50 values of SAHA and the C6-SAHA t-butyl variant 2c for HDAC1, HDAC3, and
HDAC6
9. Saji, S.; Kawakami, M.; Hayashi, S.; Yoshida, N.; Hirose, M.; Horiguchi, S. I.; Itoh,
A.; Funata, N.; Schreiber, S. L.; Yoshida, M.; Toi, M. Oncogene 2005, 24, 4531.
10. Khan, N.; Jeffers, M.; Kumar, S.; Hackett, C.; Boldog, F.; Khramtsov, N.; Qian, X.;
Mills, E.; Berghs, S. C.; Carey, N.; Finn, P. W.; Collins, L. S.; Tumber, A.; Ritchie, J.
W.; Jensen, P. B.; Lichenstein, H. S.; Sehested, M. Biochem. J. 2008, 409, 581.
11. O’Connor, O. A.; Heaney, M. L.; Schwartz, L.; Richardson, S.; Willim, R.;
MacGregor-Cortelli, B.; Curly, T.; Moskowitz, C.; Portlock, C.; Horwitz, S.;
Zelenetz, A. D.; Frankel, S.; Richon, V.; Marks, P.; Kelly, W. K. J. Clin. Oncol. 2006,
24, 166.
Compound
IC50/lM
HDAC1
HDAC3
HDAC6
SAHA
2c
0.096 0.02
0.99 0.06
0.136 0.01
5.4 0.7
0.074 0.009
2.4 0.5
12. Bieliauskas, A. V.; Pflum, M. K. H. Chem. Soc. Rev. 2008, 37, 1402.
13. (a) Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.; Rifkind, R. A.; Marks,
P. A.; Pavletich, N. P. Nature 1999, 188; (b) Vannini, A.; Volpari, C.; Filocamo, G.;
Casavola, E. C.; Brunetti, M.; Renzoni, D.; Chakravarty, P.; Paolini, C.; Francesco,
R. D.; Gallinari, P.; Steinkuhler, C.; Marco, S. D. Proc. Natl. Acad. Sci. U.S.A. 2004,
101, 15064; (c) Somoza, J. R.; Skene, R. J.; Katz, B. A.; Mol, C.; Ho, J. D.; Jennings,
A. J.; Luong, C.; Arvai, A.; Buggy, J. J.; Chi, E.; Tang, J.; Sang, B.-C.; Verner, E.;
Wynands, R.; Leahy, E. M.; Dougan, D. R.; Snell, G.; Navre, M.; Knuth, M. W.;
Swanson, R. V.; McRee, D. E.; Tari, L. W. Structure 2004, 12, 1324; (d) Bottomley,
M. J.; Lo Surdo, P.; Di Giovine, P.; Cirillo, A.; Scarpelli, R.; Ferrigno, F.; Jones, P.;
Neddermann, P.; De Francesco, R.; Steinkuhler, C.; Gallinari, P.; Carfi, A. J. Biol.
Chem. 2008, 283, 26694; (e) Schuetz, A.; Min, J.; Allali-Hassani, A.; Schapira, M.;
Shuen, M.; Loppnau, P.; Mazitschek, R.; Kwiatkowski, N. P.; Lewis, T. A.;
Maglathin, R. L.; McLean, T. H.; Bochkarev, A.; Plotnikov, A. N.; Vedadi, M.;
Arrowsmith, C. H. J. Biol. Chem. 2008, 283, 11355; (f) Watson, P. J.; Fairall, L.;
Santos, G. M.; Schwabe, J. W. Nature 2012, 481, 335; (g) Bressi, J. C.; Jennings, A.
J.; Skene, R.; Wu, Y.; Melkus, R.; Jong, R. D.; O’Connell, S.; Grimshaw, C. E.;
Navre, M.; Gangloff, A. R. Bioorg. Med. Chem. Lett. 2010, 20, 3142.
14. (a) Hu, E.; Dul, E.; Sung, C.-M.; Chen, Z.; Kirkpatrick, R.; Zhang, G.-F.; Johanson,
K.; Liu, R.; Lago, A.; Hofmann, G.; Macarron, R.; De Los Frailes, M.; Perez, J.;
Krawiec, J.; Winkler, J.; Jaye, M. J. Pharmacol. Exp. Ther. 2003, 307, 720; (b)
Beckers, T.; Burkhardt, C.; Wieland, H.; Gimmnich, P.; Ciossek, T.; Maier, T.;
Sanders, K. Int. J. Cancer 2007, 121, 1138.
15. Auzzas, L.; Larsson, A.; Matera, R.; Baraldi, A.; Deschênes-Simard, B.; Giannini,
G.; Cabri, W.; Battistuzzi, G.; Gallo, G.; Ciacci, A.; Vesci, L.; Pisano, C.; Hanessian,
S. J. Med. Chem. 2010, 53, 8387.
16. (a) Bieliauskas, A.; Weerasinghe, S.; Pflum, M. H. Bioorg. Med. Chem. Lett. 2007,
17, 2216; (b) Choi, S. E.; Weerasinghe, S. V.; Pflum, M. K. Bioorg. Med. Chem. Lett.
2011, 21, 6139.
17. (a) Guan, P.; Sun, F. E.; Hou, X.; Wang, F.; Yi, F.; Xu, W.; Fang, H. Bioorg. Med.
Chem. Lett. 2012, 20, 3865; (b) Lee, C.; Choi, E.; Cho, M.; Lee, B.; Oh, S. J.; Park, S.-
K.; Lee, K.; Kim, H. M.; Han, G. Bioorg. Med. Chem. Lett. 2012, 22, 4189.
18. Xu, X.; Xie, C.; Edwards, H.; Zhou, H.; Buck, S. A.; Ge, Y. PLoS ONE 2011, 6,
e17138.
over HDAC1 and HDAC6. However, the bulkiest analog, the t-butyl
variant 2c, displayed preference for HDAC1 and HDAC6 over
HDAC3. The data indicate that the methyl, t-butyl, and 2-ethyl-
hexyl variants (2a, 2c, and 2d) display modestly different prefer-
ences for each HDAC isoform while still maintaining nanomolar
or low micromolar potency.
To more thoroughly assess the selectivity observed in the initial
screen, we determined the IC50 values of the C6-t-butyl variant 2c
against HDAC1, HDAC3, and HDAC6. We selected the t-butyl
analog because it showed the most potential to create a dual
HDAC1/HDAC6-selective inhibitor, which would be useful for the
treatment and study of acute myeloid leukemia.18 As expected
based on the initial screen, the C6-t-butyl analog 2c displayed
modest preference for HDAC1 and HDAC6 compared to HDAC3
(six-fold and two-fold, respectively, Table 2). As a control, SAHA
showed no selectivity, as expected (Table 2).10 The analysis shows
that substituents on the C6 position modestly influence inhibitor
selectivity and may promote creation of dual selective inhibitors.
In conclusion, SAHA analogs containing substituents on the C6
position in the linker region can display nanomolar IC50 values,
indicating that subsitutents near the solvent-exposed capping
group are accommodated in the HDAC active site. In addition,
C6-substituents can also modestly influence selectivity for individ-
ual HDAC isoforms. Combined with earlier studies of SAHA analogs