Page 3 of 4
ChemComm
7671ꢀ7673; (d) A. S. K. Hashmi, L. Ding, J. W. Bats, P. Fischer, W.
authentic sample of acyclic diene IIIh from a separate procedure
Frey, Chem. Eur. J. 2003, 9, 4339ꢀ4345; (e) L. Zhang, S. A.
Kozmin, J. Am. Chem. Soc. 2005, 127, 6962ꢀ6963; (f) J.ꢀM. Tang,
S. Bhunia, S. M. A. Sohel, M.ꢀY. Lin, H.ꢀY. Liao, S. Datta, A. Das,
R.ꢀS. Liu, J. Am. Chem. Soc. 2007, 129, 15677ꢀ15683; (g) F.
Gagosz, Org. Lett., 2005, 7, 4129ꢀ4132; (h) C. NietoꢀOberhuber,
M.P. Munoz, E. Bunuel, C. Nevado, D. J. Cardenas, A. M.
Echavarren, Angew. Chem. Int. Ed. 2004, 43, 2402ꢀ2406; (i) E.
JimenezꢀNunez, K. Olawi, A. M. Echavarren, Chem. Commun.,
2009, 7327ꢀ7327; (j) N. Chatani, T. Morimoto, T. Muto, S. Murai,
J. Am. Chem. Soc., 1994, 116, 6049ꢀ6050.
(eq 2). In the presence of P(tꢀBu)2(oꢀbiphenyl)AuSbF6 (5 mol %),
this acyclic diene reacted slowly with benzaldehyde (2 equiv) in
dichloromethane to produce two diasteromeric cycloadducts 2h
and 2h’ in nearly equal proportion whereas 1,7ꢀenyne 1h gave
only oxacyclic product 2h (Table 2, entry 7). The proposed
structure of species 2h’ was inferred by the coupling constants of
60
65
70
5
the OCHPh proton (dd,
J = 4.4, 1.2 Hz). The poor
diastereoselectivity of species IIIh precludes its participation in
10 this enyne cycloaddition.
3.
E. J. Nunez, C. K. Claverie, C. NietoꢀOberhuber, A. M. Echavarren,
Angew. Chem. Int. Ed., 2006, 45, 5452ꢀ5455.
4. (a) K. Molawi, N. Delpont, A. M. Echavarren, Angew Chem. Int. Ed.,
2010, 49, 5317ꢀ3519; (b) L. Radtke, M.Willot, H. S. S. Ziegler, S.
Saurland, C. Srohmann, R. Frohlich, P.Habenberger, H. Waldmann,
M.Christmann, Angew Chem. Int. Ed., 2011, 50, 3998ꢀ4002.
As shown in Scheme 2, we postulate that cycloadduct 2a
likely arose from the interception of goldꢀcontaining
cyclobuteniumꢀlike intermediate B12 with benzaldehyde giving
chairꢀlike transition state C, ultimately giving observed product
15 2a stereoselectively. This reaction model also rationalizes our
observation on aldehyde substrates that electronꢀrich aryl
aldehydes are more efficient than their electronꢀdeficient
analogues (Table 3, entries 1ꢀ4) in the cycloaddition reactions as
the former shows great nucleophilicity to intercept species B.
5.
A. EscribanoꢀCuesta, V. LopezꢀCarrillo, D. Janssen, A. M.
Echavarren, Chem, Eur. J., 2009, 15, 5646ꢀ5650.
M. Schelwies, A.L. Dempwolff, F. Rominger, G. Helmchen, Angew
Chem. Int. Ed., 2007, 46, 5598ꢀ5601.
75 6.
7. Reviews for goldꢀcatalyzed cycloaddition reactions, see: (a) a) A. S.
K. Hashmi,. Chem. Rev. 2007, 107, 3180ꢀ3211; b) A. Fürstner,
Chem. Soc. Rev. 2009, 38, 3208ꢀ3221; c) N. T. Patil. Y. Yamamoto,
Chem. Rev. 2008, 108, 3395ꢀ3442; d) S. M. A. Sohel, R.ꢀS. Liu,
Chem. Soc. Rev. 2009, 38, 2269–2281; e) F. López, J. L.
Mascareñas, Beilstein, J. Org. Chem. 2011, 7, 1075ꢀ1094; f) C.
Aubert, L. Fensterbank, P. Garcia, M. Malacria, A. Simonneau,
Chem. Rev. 2011, 111, 1954.
20
80
85 8.
We just reported [2+2+3]ꢀcycloadditions of 1,6ꢀenynes with
nitrones, but these enynes gave only cycloisomerization
products when benzaldehyde was used. See S. A. Gawade, S.
Bhunia, R.ꢀS. Liu, Angew. Chem. Int. Ed. 2012, 51, 7835-38.
25
9. (a) A. Fürstner, A. Schlecker, C. W. Lehmann, Chem. Commun.,
2007, 4277ꢀ4279; (b) G. B. Bajracharya, I. Nakamura, Y.
Yamamoto, J. Org. Chem., 2005, 70, 892ꢀ897.
90
10.
Crystallogtaphic data of compound 2a is deposited at Cambridge
Crystallographic Data Center (CCDC 896604)
30
.
11.
Treatment of cyclobutene 3a with benzaldehyde (2 equiv) and P(tꢀ
Bu)2(oꢀbiphenyl)AuSbF6 in DCM (25 0C, 12 h) gave unreacted 3a in
76% recovery.
95
Scheme 2. Stereochemical course and reaction mechanism
12.
In Scheme 2, intermediate B is represented with two resonance
structures B’ and B”; this character will retard the conversion of this
intermediate to bicyclic cyclobutadiene 3a via an elimination of gold
35
In summary, we report a goldꢀcatalyzed stereoselective
cycloaddition of 1,7ꢀenynes13 with various carbonyl species. This
cycloaddition proceeds with a wide scope of enynes and carbonyl
species in reasonable proportions with an efficient suppression of
cycloisomerization byproduct. Based on our experimental data,
100
fragment.
40 we postulate that the formation of such [2+2+2]ꢀcycloadducts
arise from an efficient interception of cyclobuteniumꢀlike
intermediate B. This work highlights the utility of gold catalysis
in cycloaddition reactions.
105
13. The [2+2+2] formal cycloadditions failed to work with substrates
bearing 1,2ꢀdisubstituted alkenes including 2ꢀsubstituted 4ꢀmethoxyꢀ
phenyl group.
Notes and references
45 1.
(a) E. JiménezꢀNúñez, A. M. Echavarren, Chem. Rev. 2008, 108,
3326 3350; (b) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev.
2008, 108, 3351ꢀ3378; (c) A. S. K. Hashmi, M. Rudolph, Chem.
Soc. Rev. 2008, 37, 1766ꢀ1775; (d) A. Fürstner, P. W. Davies,
Angew. Chem. Int. Ed. 2007, 46, 3410ꢀ3449; (e) L. Zhang, J. Sun,
S. A. Kozmin, Adv. Synth. Catal. 2006, 348, 2271ꢀ2296.
50
2.
For Au and Ptꢀcatalyzed cycloisomerizations of 1,nꢀenynes (n = 5ꢀ
7), see selected examples: (a) E. JiménezꢀNúñez, K. Molawi, A. M.
Echavarren, Chem. Commun. 2009, 7327ꢀ7329; (b) A. Fürstner, P.
Hannen, Chem. Eur. J. 2006, 12, 3006ꢀ3019; (c) X. Linghu, J. J.
KennedyꢀSmith, F. D. Toste, Angew. Chem. Int. Ed. 2007, 46,
55
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3