16
A. Marciniak et al. / Journal of Inorganic Biochemistry 117 (2012) 10–17
Fig. 10. The comparison of the calculated structures of the Cys-analogues of analyzed
peptides (blue) and a) CuL complex for NH2-[His2,7]P1, b) CuHL complex for
Ac-[His2,7]P2 with the cyclic structures (red).
of structures of the mentioned complexes and structure of their
Cys-analogues has shown that the location of the aromatic rings of
Phe and Trp is very similar in the case of protected peptide however
the whole structure of the part with the –Phe-Trp-Lys-Thr-sequence
is not strictly the same.
Fig. 8. Comparison of the efficacy of copper (II) binding between AcGlyHisGlyGly and
Ac-[His2,7]P2.
previously discussed system (unprotected peptide). The presence of
two histidines and formation of the complex with cyclic structure sig-
nificantly facilitate the process of Cu (II) binding.
As it was shown above, studied peptides are able to form com-
plexes with cyclic structure: CuL (in a case of NH2-[His2,7]P1) and
CuHL (in a case of Ac-[His2,7]P2). In order to determine the effects
of somatostatin modifications on the structural properties of aromatic
fragments of NH2-[His2,7]P1 and Ac-[His2,7]P2 the optimal geometries
of NH2-[Cys2,7]P1 and Ac-[Cys2,7]P2 were found.
Acknowledgements
Authors gratefully acknowledge the allotment of the CPU time in
Wroclaw Center of Networking and Supercomputing (WCSS).
References
The comparison of aromatic part of complexes and Cys-analogues
of analyzed peptides structures shows that the modification of
N-protected peptide does not causes significant changes in the ar-
rangement of aromatic amino acid rings phenylalanine and trypto-
phan (see Fig. 10).
[1] Y.C. Patel, Front. Neuroendocrinol. 20 (1999) 157–198.
[2] K. Chen, P.S. Conti, Adv. Drug Deliv. Rev. 62 (2010) 1005–1022.
[3] J. Strosberg, L. Kvols, World J. Gastroenterol. 16 (2010) 2963–2970.
[4] S.W.J. Lamberts, W.W. de Herder, L.J. Hofland, Trends Endocrinol. Metab. 13
(2002) 451–457.
[5] J.J.M. Teunissen, D.J. Kwekkeboom, M. de Jong, J.P. Esser, R. Valkema, E.P.
Krenning, Best Pract. Res. Clin. Gastroenterol. 19 (2005) 595–616.
[6] J. Brasuń, M. Cebrat, Ł. Jaremko, M. Jaremko, G. Ilc, O. Gładysz, Igor Zhukov, Dalton
Trans. (2009) 4853–4857.
5. Conclusions
[7] C.L. Ferreira, D.T. Yapp, E. Lamsa, M. Gleave, C. Bensimon, P. Jurek, G.E. Kiefer,
Nucl. Med. Biol. 35 (2008) 875–882.
[8] J.S. Lewis, M.R. Lewis, P.D. Cutler, A. Srinivasan, M.A. Schmidt, S.W. Schwarz, M.M.
Morris, J.P. Miller, C.J. Anderson, Clin. Cancer Res. 5 (1999) 3608–3616.
[9] C.J. Anderson, F. Dehdashti, P.D. Cutler, S.W. Schwarz, R. Laforest, L.A. Bass, J.S.
Lewis, D.W. McCarthy, J. Nucl. Med. 42 (2001) 213–221.
[10] H.M. Irving, M.G. Miles, L.D. Pettitt, Anal. Chim. Acta 38 (1967) 475–488.
[11] P. Gans, A. Sabatini, A. Vacca, SUPERQUAD: an improved general program for com-
putation of formation constants from potentiometric data, J. Chem. Soc. Dalton
Trans. (1985) 1195–1200.
In the presented paper we have shown that the His-analogues of
octreotide are effective ligands for Cu (II) ions. In the basic conditions
they form stable four nitrogen complexes with three amide nitrogens
bound to the metal ion. The most interesting is that both peptides are
able to form the complexes with the cyclic structures. The comparison
Cu(II)
100
80
60
40
20
0
[12] E. Cances, B. Mennucci, J. Tomasi, J. Chem. Phys. 107 (1997) 3032–3041.
[13] J. Tomasi, B. Mennucci, E.J. Cances, J. Mol, Struct. THEOCHEM 464 (1999)
211–226.
[14] J.P. Stewart James, J. Mol. Model. 15 (2009) 765–805.
[15] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G.
Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M.
Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.
Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P.
Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V.
Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford
CT, 2009.
[16] R.H. Holm, P. Kennepohl, E.I. Solomon, Chem. Rev. 96 (1996) 2239–2314.
[17] F.E. Mabbs, D. Collins, in: Studies in Inorganic Chemistry, Electron of the peptide
itself, Paramagnetic Resonance of d-Transition Metal Compounds, Vol. 12,
Elsevier, Amsterdam, 1992.
[18] S. Bruni, F. Cariati, P.G. Daniele, E. Prenesti, Spectrochim Acta A 56 (2000) 815–827.
[19] H. Kozłowski, T. Kowalik-Jankowska, M. Jeżowska-Bojczuk, Coord. Chem. Rev.
249 (2005) 2323–2334.
Ac-[His2,7]OCT
AcGlyGlyGlyHis
2
4
6
8
10
pH
Fig. 9. Comparison of the efficacy of copper (II) binding between AcGlyGlyGlyHis and
[20] H. Kozłowski, W. Bal, M. Dyba, T. Kowalik-Jankowska, Coord. Chem. Rev. 184
Ac-[His2,7]P2.
(1999) 319–346.