Notes and references
1 (a) N. Eliopoulos, D. Cournoyer and R. L. Momparler, Cancer
Chemother. Pharmacol., 1998, 42, 373–378; (b) R. L. Momparler
and J. Laliberte, Leuk. Res., 1990, 14, 751–754; (c) U. R. Kees,
J. Ford, V. M. Dawson, E. Piall and G. W. Aherne, Cancer Res.,
1989, 49, 3015–3019; (d) P. J. Aduma, S. V. Gupta, A. L. Stuart
and G. Tourigny, Antiviral Chem. Chemother., 1990, 1, 255–262.
2 (a) J. Laliberte, V. E. Marquez and R. L. Momparler, Cancer
Chemother. Pharmacol., 1992, 30, 7–11; (b) J. S. Driscoll,
V. E. Marquez, J. Plowman, P. S. Liu, J. A. Kelley and
J. J. Barchi Jr., J. Med. Chem., 1991, 34, 3280–3284; (c) L. Frick,
C. Yang, V. E. Marquez and R. V. Wolfenden, Biochemistry, 1989,
28, 9423–9430.
Scheme 7 Reagents and conditions: (a) BSTFA, CH3CN; 39, HgO/
HgBr, benzene, 40–50%; (b) NH3, MeOH, RT, 24 h, 95–100%.
3 (a) S. J. Chung, C. Fromme and G. L. Verdine, J. Med. Chem.,
2005, 48, 658–660; (b) P. S. Liu, V. E. Marquez, J. S. Driscoll and
R. W. Fuller, J. Med. Chem., 1981, 24, 662–666; (c) C. H. Kim and
V. E. Marquez, J. Org. Chem., 1987, 52, 1979–1983;
(d) V. E. Marquez, Nucleosides Nucleotides, 1983, 2, 81–90;
(e) J. Laliberte, V. E. Marquez and R. L. Momparler, Cancer
Chemother. Pharmacol., 1992, 30, 7–11; (f) L. Betts, S. Xiang,
S. A. Short, R. Wolfenden and C. W. Carter Jr., J. Mol. Biol.,
1994, 235, 635–656.
Fig. 2 2D NOESY experiment of 41.
Table 1 hCDA inhibition assay dataa
4 (a) O. R. Ludek, G. K. Schroeder, C. Liao, P. L. Russ,
R. Wolfenden and V. E. Marquez, J. Org. Chem., 2009, 74,
6212–6223; (b) D. C. Carlow, S. A. Short and R. Wolfenden,
Biochemistry, 1998, 37, 1199–1203; (c) Y. Yoshimura, H. R. Moon,
Y. S. Choi and V. E. Marquez, J. Org. Chem., 2002, 67, 5938–5945;
(d) L. S. Jeong, G. Buenger, J. J. McCormack, D. A. Cooney,
Z. Hao and V. E. Marquez, J. Med. Chem., 1998, 41, 2572–2578.
5 (a) P. Y. S. Lam, P. K. Jadhav, C. J. Eyermann, C. N. Hodge,
Y. Ru, L. T. Bachelor, J. L. Meek, M. J. Otto, M. M. Rayner,
Y. N. Wong, C.-H. Chang, P. C. Weber, D. A. Jackson,
T. R. Sharpe and S. Erickson-Vittanen, Science, 1994, 263,
380–384; (b) G. V. De Lucca and P. Y. S. Lam, Drugs Future,
1998, 23, 987–994; (c) A. F. Hegarty and L. J. Drennan, in
Comprehensive Organic Functional Group Transformations,
ed. A. R. Katritzky, O. Meth-Cohn and C. W. Rees, Pergamon,
Oxford, 1995, vol. 5, pp. 499–526.
6 (a) N. Dieltiens, D. D. Claeys, B. Allaert, F. Verpoort and
C. V. Stevens, Chem. Commun., 2005, 4477–4478; (b) B. C.
H. May and A. D. Abell, Chem. Commun., 2001, 2080–2081.
7 (a) M. D. McReynolds, K. T. Sprott and P. R. Hanson, Org. Lett.,
2002, 4, 4673–4676; (b) V. E. Marquez, P. S. Liu, J. A. Kelley and
J. S. Driscoll, J. Org. Chem., 1980, 45, 482–485.
8 (a) S. F. Martin, B. C. Follows, P. J. Hergenrother and
C. L. Franklin, J. Org. Chem., 2000, 65, 4509; (b) J. D. Winkler,
S. M. Asselin, S. Shepard and J. Yuang, Org. Lett., 2004, 6,
3821–3824; (c) V. Gracias, A. F. Gasiecki and S. W. Djuric,
Org. Lett., 2005, 7, 3183–3186.
Inhibitor
1
2 (Me, S)
3 (Me, R)
Ki
35.3 ꢀ 0.49 (nM) 2.56 ꢀ 0.18 (mM) 146 ꢀ 4.87 (nM)
a
Human cytidine deaminase activity was determined by a direct
spectrophotometric assay based on the decrease in absorbance at
282 nm upon cytidine deamination.
1 (Table 1). Among them, 4R-isomer 3 (Ki = 146 nM) was
more potent than 4S-isomer 2 (Ki = 2.56 mM), which might be
due to the stereochemical preference of 4R-configuration to 4S-
configuration in the active site of hCDA. Both isomers were
found to show competitive inhibition against cytidine deamination
by hCDA, i.e. the compounds bind to the active site of hCDA.
In summary, novel diazepinone derivatives were successfully
synthesized from the corresponding a-amino acids and amino
alcohols by a new and efficient synthetic method using ring
closing metathesis. In addition, novel 4-methyl diazepinone
derivatives were successfully employed for the synthesis of
diazepinone nucleosides, which showed interesting inhibitory
activity against hCDA depending on their stereochemistry of
4-methyl substituents. Further work in this regard is underway
in our laboratory.
9 (a) S. J. Miller, S. H. Kim, Z.-R. Chen and R. H. Grubbs, J. Am. Chem.
Soc., 1995, 117, 2108–2109; (b) J. Kavalek, V. Machacek, G. Svoboda
´ ´ ´
and V. Sterba, Collect. Czech. Chem. Commun., 1987, 52, 1999–2004.
10 (a) C. H. Kim and V. E. Marquez, J. Org. Chem., 1987, 52,
1979–1983; (b) V. E. Marquez, J. A. Kelley and J. S. Driscoll,
J. Org. Chem., 1980, 45, 5308–5312; (c) E. Wittenburg, Chem. Ber.,
1968, 101, 1095–1114; (d) P. S. Liu, V. E. Marquez, J. S. Driscoll
and R. W. Fuller, J. Med. Chem., 1981, 24, 662–666.
This work was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology
(Grant 313-2007-2-E00642 to Y. C.), a Korea University grant
(K0618131 to Y. C.), and GRRC program (Dongguk 2012-B02
to K. L.) by Gyeonggido, Korea.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 11443–11445 11445