2038 cm−1; UV-Vis in CH2Cl2, λmax(ε): 294 (3.5 × 104) and
J. Am. Chem. Soc., 2006, 128, 6975–6989; (c) C. J. Milios, A. Vinslava,
P. A. Wood, S. Parsons, W. Wernsdorfer, G. Christou, S. P. Perlepes and
E. K. Brechin, J. Am. Chem. Soc., 2007, 129, 8–9; (d) C. J. Milios,
A. Vinslava, W. Wernsdorfer, S. Moggach, S. Parsons, S. P. Perlepes,
G. Christou and E. K. Brechin, J. Am. Chem. Soc., 2007, 129, 2754–
2755.
3 (a) S. Osa, T. Kido, N. Matsumoto, N. Re, A. Pochaba and J. Mrozinski,
J. Am. Chem. Soc., 2004, 126, 420–421; (b) J. Rinck, G. Novitchi,
W. Van den Heuvel, L. Ungur, Y. H. Lan, W. Wernsdorfer, C. E. Anson,
L. F. Chibotaru and A. K. Powell, Angew. Chem., Int. Ed., 2010, 49,
7583–7587; (c) V. Baskar, K. Gopal, M. Helliwell, F. Tuna,
W. Wernsdorfer and R. E. P. Winpenny, Dalton Trans., 2010, 39, 4747–
4750.
4 (a) N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara and Y. Kaizu,
J. Am. Chem. Soc., 2003, 125, 8694–8695; (b) N. Ishikawa, M. Sugita
and W. Wernsdorfer, J. Am. Chem. Soc., 2005, 127, 3650–3651;
(c) F. Pointillart, K. Bernot, R. Sessoli and D. Gatteschi, Chem.–Eur. J.,
2007, 13, 1602–1609; (d) P.-H. Lin, T. J. Burchell, L. Ungur,
L. F. Chibotaru and W. Wernsdorfer, Angew. Chem., Int. Ed., 2009, 48,
9489–9492; (e) S.-D. Jiang, B.-W. Wang, G. Su, Z.-M. Wang and S. Gao,
Angew. Chem., Int. Ed., 2010, 49, 7448–7451.
5 (a) S. Kanegawa, S. Karasawa, M. Nakano and K. Koga, Bull. Chem.
Soc. Jpn., 2006, 79, 1372–1382; (b) S. Karasawa and N. Koga, Inorg.
Chem., 2011, 50, 5186–5195; (c) S. Kanegawa, S. Karasawa,
M. Maeyama, M. Nakano and K. Koga, J. Am. Chem. Soc., 2008, 130,
3079–3094; (d) S. Karasawa, G. Zhou, H. Morikawa and N. Koga,
J. Am. Chem. Soc., 2003, 125, 13676–13677; (e) D. Yoshihara,
S. Karasawa and N. Koga, J. Am. Chem. Soc., 2008, 130, 10460–10461;
(f) D. Yoshihara, S. Karasawa and N. Koga, Polyhedron, 2011, 30,
3211–3217; (g) N. Koga and S. Karasawa, Bull. Chem. Soc. Jpn., 2005,
78, 1384–1400; (h) S. Karasawa, D. Yoshihara, N. Watanabe, M. Nakano
and N. Koga, Dalton Trans., 2008, 1418–1421; (i) S. Kanegawa,
S. Karasawa, M. Nakano and N. Koga, Chem. Commun., 2004, 3590–
3591.
1
508 (2.1 × 102) nm; H-NMR (270 MHz, CDCl3), δ 8.43 (dd,
J = 4.6 and 1.7 Hz, 2H), 7.51–7.10 (m, 9 H), 7.06 (dd,
J = 4.6 and 1.7 Hz, 2H); Mass spectrum (ESI) m/z Calcd for
(C19H13N5Na)+ 334.1063. Found 334.1048; Anal. Calcd for
C19H13N5: C, 73.30; H, 4.21; N, 22.49. Found: C, 73.16; H,
4.19; N, 22.44.
D3lpy This was prepared by using O3lpy in a manner similar
to the procedure reported previously.6f Crude D3lpy was chro-
matographed on Al2O3 with CH2Cl2 as eluent and then re-preci-
pitated from CH2Cl2–Et2O to afford D3lpy as red thin plate
crystals. Mp (dec.) 74–75 °C; IR (KBr disc), νCvN2 2039 cm−1
;
UV-Vis in CH2Cl2, λmax(ε): 302 (4.6 × 104) and 512 (3.1 × 102)
1
nm; H-NMR (270 MHz, CD2Cl2), δ 8.48 (d, J = 4.9 Hz, 2),
7.50–7.10 (m, 13 H), 7.07 (dd, J = 4.6 and 1.7 Hz, 2H); FAB
mass (in NBA matrix), (M + 1)+ 428; Anal. Calcd for
C26H17N7: C, 73.05; H, 4.01; N, 22.94. Found: C, 73.09; H,
4.01; N, 22.78.
D3bpy This was prepared by using O3bpy in a manner
similar to the procedure reported previously.6f Crude D3bpy was
chromatographed on Al2O3 with CH2Cl2 as eluent and then
recrystallized from ether to afford D3bpy as red crystals. Mp
(dec.) 95–105 °C; IR (KBr disc) νCvN2 2039 cm−1; UV-Vis in
1
CH2Cl2 λmax(ε) = 294 (6.2 × 104) and 510 (3.6 × 102) nm; H
NMR (CD2Cl2, 270 MHz) δ 8.44 (dd, J = 6.4, 1.7 Hz, 2H), 7.44
(d, J = 8.7 Hz, 4H), 7.25 (d, J = 8.7 Hz, 4H), 7.07 (dd, J = 6.4,
1.7 Hz, 2H), 7.02 (d, J = 1.7 Hz, 2H), 6.95 (s, 1H), 1.32 (s,
18H); Mass spectrum (ESI) m/z Calcd for (C34H34N7)+
540.2876. Found 540.2884; Anal. Calcd for C34H33N7:
C, 75.67; H, 6.16; N, 18.17. Found: C, 75.60; H, 6.21; N, 17.95.
D4py This was prepared by using O4py in a manner similar
to the procedure reported previously.6f Crude D4py was chro-
matographed on Al2O3 with CH2Cl2 as eluent and then repreci-
pitated from Et2O : n-hexane (10 : 1) to afford D4py as a red
powder in 56.3% yield. Mp (dec.) 96–100 °C; IR (KBr disc)
2039, 1587 cm−1; UV-Vis in CH2Cl2 λmax(ε) = 300 (9.2 × 104),
6 (a) K. Murashima, T. Watanabe, S. Kanegawa, D. Yoshihara, Y. Inagaki,
S. Karasawa and N. Koga, Inorg. Chem., 2012, 51, 4982–4993;
(b) S. Karasawa and N. Koga, Inorg. Chem., 2011, 50, 2055–2057;
(c) S. Karasawa, Y. Sano, T. Akita, N. Koga, T. Itoh and H. Iwamura,
J. Am. Chem. Soc., 1998, 120, 10080–10087; (d) S. Karasawa,
H. Kumada, N. Koga and H. Iwamura, J. Am. Chem. Soc., 2001, 123,
9685–9686; (e) Z. Zhu, S. Karasawa and N. Koga, Inorg. Chem., 2005,
44, 6004–6011; (f) H. Morikawa, F. Imamura, Y. Tsurukami, T. Itoh,
H. Kumada, S. Karasawa, N. Koga and H. Iwamura, J. Mater. Chem.,
2001, 11, 493–502.
7 K. Matsuda, N. Nakamura, K. Takahashi, K. Inoue, N. Koga and
H. Iwamura, J. Am. Chem. Soc., 1995, 117, 5550–5560.
1
510 (ε = 4.2 × 102) nm; H-NMR (270 MHz, CD2Cl2), δ 8.48
8 (a) O. Kahn, Molecular Magnetism, Wiley-VCH Publishers, Weinheim,
1993; (b) A. C. Rizzi, C. D. Brondino, R. Calvo, R. Baggio,
M. T. Garland and R. E. Rapp, Inorg. Chem., 2003, 42, 4409–4416;
(c) E. Pardo, R. Ruiz-García, F. Lloret, J. Faus, M. Julve, Y. Journaux,
M. A. Novak, F. S. Delgado and C. Ruiz-Pérez, Chem.–Eur. J., 2007, 13,
2054–2066; (d) M. Sarkar, G. Aromí, J. Cano, V. Bertolasi and D. Ray,
Chem.–Eur. J., 2010, 16, 13825–13833; (e) A. Bencini, C. Benelli,
D. Gatteschi and C. Zanchini, Inorg. Chem., 1980, 19, 3027–3030;
(f) J. Faus, M. Julve, F. Lloret, J. A. Real and J. Sletten, Inorg. Chem.,
1994, 33, 5535–5540; (g) A. Caneschi, D. Gatteschi, N. Lalioti,
R. Sessoli, L. Sorace, V. Tangoulis and A. Vindigni, Chem.–Eur. J., 2002,
8, 286–292.
(d, J = 4.9 Hz, 2H), 7.50–7.10 (m, 17 H), 7.07 (dd, J = 4.6
and 1.7 Hz, 2H); Mass spectrum (ESI) m/z Calcd for
(C33H21N9Na)+ 566.1812. Found 566.1788; Anal. Calcd for
C33H21N9: C, 72.92; H, 3.89; N, 23.19. Found: C, 72.85;
H, 3.90; N, 23.02.
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific
Research (B)(2) (No. 17350070) from the Ministry of Education,
Science, Sports and Culture, Japan, and by the “Nanotechnology
Support Project” of the Ministry of Education, Culture, Sports,
Science and Technology (MEXT), Japan.
9 H. Tobinaga, M. Suehiro, T. Itoh, G. Zhou, S. Karasawa and N. Koga,
Polyhedron, 2007, 26, 1905–1911.
10 G. A. Olah, S. C. Narang, B. G. Balaram Gupta and R. Malhotra, J. Org.
Chem., 1979, 44, 1247–1251.
11 (a) F. A. Cotton, D. M. L. Goodgame and D. Goodgame, J. Am. Chem.
Soc., 1961, 83, 4690–4699; (b) A. B. P. Lever, Inorganic Electronic Spec-
troscopy, Elsevier, Amsterdam, 2nd edn, 1984; (c) J. M. Holland,
C. A. Kilner, M. Thornton-Pett and M. A. Halcrow, Polyhedron, 2001,
20, 2829–2840; (d) I. Kuzniarska-Biernacka, A. Bartecki and K. Kurzak,
Polyhedron, 2003, 22, 997–1007.
References
12 A. Bencini, C. Benelli, D. Gatteschi and C. Zanchini, Inorg. Chem.,
1980, 19, 1301–1304.
1 D. Gatteschi, R. Sessoli and J. Villain, Molecular Nanomagnets, Oxford
University Press, 2006.
13 A. Rajca, J. Wongsriratanakui and S. Rajca, Science, 294, 1503–
1505.
14 H. Iwamura and N. Koga, Acc. Chem. Res., 1993, 26, 346–
351.
2 (a) L. Lecren, W. Wernsdorfer, Y. G. Li, O. Roubeau, H. Miyasaka and
R. Clérac, J. Am. Chem. Soc., 2005, 127, 11311–13117;
(b) N. E. Chakov, S.-C. Lee, A. G. Harter, P. L. Kuhns, A. P. Reyes,
S. O. Hill, N. S. Dalal, W. Wernsdorfer, K. A. Abboud and G. Christou,
This journal is © The Royal Society of Chemistry 2012
Dalton Trans.