Journal of the American Chemical Society
Article
Hatakeyama, T.; Nakamura, M. Org. Lett. 2012, 14, 1066.
(c) Hatakeyama, T.; Fujiwara, Y.; Okada, Y.; Itoh, T.; Hashimoto,
T.; Kawamura, S.; Ogata, K.; Takaya, H.; Nakamura, M. Chem. Lett.
2011, 40, 1030. (d) Noda, D.; Sunada, Y.; Hatakeyama, T.; Nakamura,
excellent yields; see: Xiang, J.; Toyoshima, S.; Orita, A.; Otera, J.
Angew. Chem., Int. Ed. 2001, 40, 3670.
(26) Molecular weight loss of the corresponding acetyl-, benzyl- and
benzoyl-protected 1-phenyl mannose were theoretically calculated as
41% (MW change: 408.40 to 240.26), 60% (MW change: 600.76 to
240.26), and 63% (MW change: 656.69 to 240.26), respectively.
(27) A similar observation was noted in the nickel-catalyzed cross-
coupling of δ-olefinic 1-bromo alkane with PhMgCl; see: Breitenfeld,
J.; Wodrich, M. D.; Hu, X. Organometallics 2014, 33, 5708.
(28) For formation of an alkyl radical intermediate from alkyl halides
in iron-catalyzed cross-coupling reactions, see ref 14c, i, and 14m.
(29) Recently, we reported a bimetallic (out-of-cage) mechanism for
iron-catalyzed enantioselective cross-coupling reactions of α-chlor-
oesters with aryl Grignard reagents (see ref 14a and references cited
therein). This does not exclude the possibility of competition of an in-
cage mechanism (see ref 14d and 14m).
(30) Bimetallic mechanisms are reported for nickel catalysts; see:
(a) Schley, N. D.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 16588.
(b) Choi, J.; Martín-Gago, P.; Fu, G. C. J. Am. Chem. Soc. 2014, 136,
12161. (c) Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.
For a discussion of related nickel-catalyzed bimetallic mechanisms, see
ref 27.
M.; Nagashima, H. J. Am. Chem. Soc. 2009, 131, 6078. (e) Furstner, A.;
̈
Martin, R.; Krause, H.; Seidel, G.; Goddard, R.; Lehmann, C. W. J. Am.
Chem. Soc. 2008, 130, 8773. (f) Nakamura, M.; Matsuo, K.; Ito, S.;
Nakamura, E. J. Am. Chem. Soc. 2004, 126, 3686. For reactions with
aryl zinc reagents, see: (g) Bedford, R. B.; Carter, E.; Cogswell, P. M.;
Gower, N. J.; Haddow, M. F.; Harvey, J. N.; Murphy, D. M.; Neeve, E.
C.; Nunn, J. Angew. Chem., Int. Ed. 2013, 52, 1285. (h) Lin, X.; Zheng,
F.; Qing, F.-L. Organometallics 2012, 31, 1578. (i) Hatakeyama, T.;
Kondo, Y.; Fujiwara, Y.; Takaya, H.; Ito, S.; Nakamura, E.; Nakamura,
M. Chem. Commun. 2009, 45, 1216. (j) Nakamura, M.; Ito, S.; Matsuo,
K.; Nakamura, E. Synlett 2005, 1794. For reactions with aryl aluminum
reagents, see: (k) Kawamura, S.; Kawabata, T.; Ishizuka, K.; Nakamura,
M. Chem. Commun. 2012, 48, 9376. (l) Bedford, R. B.; Brenner, P. B.;
Carter, E.; Clifton, J.; Cogswell, P. M.; Gower, N. J.; Haddow, M. F.;
Harvey, J. N.; Kehl, J. A.; Murphy, D. M.; Neeve, E. C.; Neidig, M. L.;
Nunn, J.; Snyder, B. E. R.; Taylor, J. Organometallics 2014, 33, 5767.
For reactions with organoboron reagents, see: (m) Hatakeyama, T.;
Hashimoto, T.; Kondo, Y.; Fujiwara, Y.; Seike, H.; Takaya, H.;
Tamada, Y.; Ono, T.; Nakamura, M. J. Am. Chem. Soc. 2010, 132,
10674. (n) Bedford, R. B.; Brenner, P. B.; Carter, E.; Carvell, T. W.;
Cogswell, P. M.; Gallagher, T.; Harvey, J. N.; Murphy, D. M.; Neeve, E.
C.; Nunn, J.; Pye, D. R. Chem. - Eur. J. 2014, 20, 7935.
(31) For the mechanism for the formation of Fe(I) species in cross-
coupling reactions, see: (a) Adams, C. J.; Bedford, R. B.; Carter, E.;
́
Gower, N. J.; Haddow, M. F.; Harvey, J. N.; Huwe, M.; Cartes, M. A.;
Mansell, S. M.; Mendoza, C.; Murphy, D. M.; Neeve, E. C.; Nunn, J. J.
Am. Chem. Soc. 2012, 134, 10333. (b) Bedford, R. B. Acc. Chem. Res.
2015, 48, 1485. (c) See also ref 14l.
(15) Isobe, M.; Kondo, S.; Nagasawa, N.; Goto, T. Chem. Lett. 1977,
6, 679.
(16) Decomposition of starting chlororibofuranose 1 competed with
the coupling reaction under the reaction conditions regardless of the
difference on the ligands and reagents used, resulting in the poor mass
balance.
(32) Several pathways have been proposed for the carbon−halogen
(C−X) bond cleavage in iron-catalyzed cross-coupling reactions: the
iron(II) species having two aryl groups, or one aryl and one halide
group, with a SciOPP ligand can react with alkyl halides to generate the
radical intermediate and to give the corresponding cross-coupling
product. The reaction rates of the coupling reactions depend on the
nature of aryl groups and alkyl halides. See: (a) Daifuku, S. L.;
Kneebone, J. L.; Snyder, B. E. R.; Neidig, M. L. J. Am. Chem. Soc. 2015,
137, 11432. (b) Takaya, H.; Nakajima, S.; Nakagawa, N.; Isozaki, K.;
Iwamoto, T.; Imayoshi, R.; Gower, N.; Adak, L.; Hatakeyama, T.;
Honma, T.; Takagi, M.; Sunada, Y.; Nagashima, H.; Hashizume, D.;
Takahashi, O.; Nakamura, M. Bull. Chem. Soc. Jpn. 2015, 88, 410. This
process may proceed in the first catalytic cycle of the reaction before
the formation of the highly reactive iron(I) species.31
(33) We do not exclude the possibility of the mechanism via the
formation of iron (III) intermediate and following reductive
elimination of the carbon−carbon bond formation. We consider that
the reductive elimination from iron(III)-glycosyl-aryl complex B
should be rapid due to instability of the iron(III) intermediate and
can be stereospecific to reflect the stereochemistry of the stable radical
conformer. Our ongoing extensive DFT study on the mechanism of
iron-catalyzed enantioselective coupling suggests potential competition
of both mechanisms via B or TS C in Figure 1. The results will be
reported in due course. Insightful comments on this point by a
reviewer are gratefully acknowledged.
(18) Qing reported that the combination of TMEDA and DPPP as a
ligand improved the Fe-catalyzed Negishi-type cross-coupling reaction
of alkyl halides bearing β-fluorine. See ref 14h.
1
(19) The stereochemistry of the anomers was determined by H
NMR analysis and confirmed by single crystal X-ray analysis. X-ray
structures are shown in the Supporting Information.
(20) (a) Mayer, M.; Welther, A.; von Wangelin, A. J. ChemCatChem
2011, 3, 1567. (b) Jennerjahn, R.; Jackstell, R.; Piras, I.; Franke, R.;
Jiao, H.; Bauer, M.; Beller, M. ChemSusChem 2012, 5, 734. (c) Chen,
C.; Dugan, T. R.; Brennessel, W. W.; Weix, D. J.; Holland, P. L. J. Am.
Chem. Soc. 2014, 136, 945. (d) Bai, X.-F.; Song, T.; Deng, W.-H.; Wei,
Y.-L.; Li, L.; Xia, C.-G.; Xu, L.-W. Synlett 2014, 25, 417.
(21) Berger, S.; Langer, F.; Lutz, C.; Knochel, P.; Mobley, T. A.;
Reddy, C. K. Angew. Chem., Int. Ed. Engl. 1997, 36, 1496.
(22) The reaction of glucopyranosyl chloride 3′ under the conditions
of 0 °C, 16 h gave 3a in only 32% yield (α/β = 70/30). In addition,
The FeCl3−DPPP catalyst system provided it in 67% yield by the
reaction of 3′ with the phenylzinc reagent; see the Supporting
Information (Table S3). The preparation of DPPP derivatives is an
ongoing process in our laboratory, in order to improve the efficiency of
the cross-coupling reaction of glycosyl chlorides. A patent application
has been filed: Nakamura, M.; Hatakeyama, T.; Hashimoto, T.;
Nakajima, S.; Nakagawa, N. Jpn. Kokai Tokkyo Koho JP 2013180991,
2013.
(23) (a) Nolen, E. G.; Ezeh, V. C.; Feeney, M. J. Carbohydr. Res.
2014, 396, 43. (b) Tatina, M.; Kusunuru, A. K.; Yousuf, S. K.;
Mukherjee, D. Chem. Commun. 2013, 49, 11409.
(24) (a) Yamago, S.; Miyazoe, H.; Yoshida, J.-i. Tetrahedron Lett.
1999, 40, 2343. (b) Togo, H.; He, W.; Waki, Y.; Yokoyama, M. Synlett
(34) (a) Giese, B. Angew. Chem., Int. Ed. Engl. 1989, 28, 969.
(b) Giese, B.; Dupuis, J.; Leising, M.; Nix, M.; Lindner, H. J. Carbohydr.
Res. 1987, 171, 329. (c) Dupuis, J.; Giese, B.; Ruegge, D.; Fischer, H.;
̈
Korth, H.-G.; Sustmann, R. Angew. Chem., Int. Ed. Engl. 1984, 23, 896.
(d) See also ref 24b.
(35) Shuto and Matsuda proposed the transition states of the reaction
of glucosyl radical, where the selectivity of products was shown to be
mainly controlled by kinetic anomeric effect. Therefore this effect may
also be considered; see: Abe, H.; Shuto, S.; Matsuda, A. J. Am. Chem.
Soc. 2001, 123, 11870.
(36) For the steric effect on product selectivity, see: (a) Araki, Y.;
Endo, T.; Tanji, M.; Nagasawa, J.; Ishido, Y. Tetrahedron Lett. 1988, 29,
351. (b) Barton, D. H. R. Pure Appl. Chem. 1988, 60, 1549. (c) Giese,
́
1998, 1998, 700. (c) Mazeas, D.; Skrydstrup, T.; Doumeix, O.; Beau, J.-
M. Angew. Chem., Int. Ed. Engl. 1994, 33, 1383. (d) Stork, G.; Suh, H.
S.; Kim, G. J. Am. Chem. Soc. 1991, 113, 7054.
(25) Conventional methods for deprotection of acetyl groups may
provide lower yields due to a tedious workup procedure, but
transesterification reactions using dibutyltin oxide in methanol provide
B.; Gonzal
23, 69.
́
ez-Gom
́
ez, J. A.; Witzel, T. Angew. Chem., Int. Ed. Engl. 1984,
I
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX