Full Paper
D. J. Constable in Green Chemistry and Engineering: A Practical Approach,
Wiley, New York, 2011; d) D. Prat, A. Wells, J. Hayler, H. Sneddon, C. R.
McElroy, P. J. Dunn, Green Chem. 2016, 18, 288–296; e) B. H. Lipshutz, F.
Gallou, S. Handa, ACS Sustainable Chem. Eng. 2016, 4, 5838–5849; f) B. H.
Lipshutz, J. Org. Chem. 2017, 82, 2806–2816.
of N-nucleophiles (0.2 mmol, 1 equiv), CuSO4·5H2O (0.02 mmol,
10 mol-%), ligand (0.04 mmol, 20 mol-%), K2CO3 (0.4 mmol, 2 equiv)
and 2 wt.-% APGS-550-M/H2O (0.4 mL, 0.5 M) in an oven-dried 4 mL
vial, the mixture was stirred at 50 °C for 26 h. Upon the completion
monitored by TLC, the reaction was cool to room temperature and
extracted the aqueous reaction by ethyl acetate, concentrated un-
der reduced pressure. The crude mixture was purified by flash col-
umn chromatography (5 % ethyl acetate/petroleum ether) to afford
desired products.
[7] a) C.-J. Li, Chem. Rev. 1993, 93, 2023–2035; b) T. Kitanosono, K. Masuda,
P. Xu, S. Kobayashi, Chem. Rev. 2018, 118, 679–746; c) H. Gong, H. Zeng,
F. Zhou, C.-J. Li, Angew. Chem. Int. Ed. 2015, 54, 5718–5721; Angew. Chem.
2015, 127, 5810; d) W. Li, G. Yin, L. Huang, Y. Xiao, Z. Fu, X. Xin, F. Liu, Z.
Li, W. He, Green Chem. 2016, 18, 4879–4883; e) C. Wu, X. Xin, Z.-M. Fu,
L.-Y. Xie, K.-J. Liu, Z. Wang, W. Li, Z.-H. Yuan, W.-M. He, Green Chem. 2017,
19, 1983–1989; f) L.-Y. Xie, Y.-J. Li, J. Qu, Y. Duan, J. Hu, K.-J. Liu, Z. Cao,
W.-M. He, Green Chem. 2017, 19, 5642–5646.
[8] a) Y.-M. Lin, G.-P. Lu, C. Cai, W.-B. Yi, Org. Lett. 2015, 17, 3310–3313; b) Y.-
M. Lin, G.-P. Lu, G.-X. Wang, W.-B. Yi, Adv. Synth. Catal. 2016, 358, 4100–
4105; c) D.-L. Kong, G.-P. Lu, M.-S. Wu, Z.-F. Shi, Q. Lin, ACS Sustainable
Chem. Eng. 2017, 5, 3465–3470; d) G.-P. Lu, C. Cai, F. Chen, R. L. Ye, B.-J.
Zhou, ACS Sustainable Chem. Eng. 2016, 4, 1804–1809.
[9] P. Siemsen, R. C. Livingston, F. Diederich, Angew. Chem. Int. Ed. 2000, 39,
2632–2657; Angew. Chem. 2000, 112, 2740.
[10] H. Jiang, W. Zeng, Y. Li, W. Wu, L. Huang, W. Fu, J. Org. Chem. 2012, 77,
5179–5183.
[11] a) Z. Chen, H. Jiang, X. Pan, Z. He, Tetrahedron 2011, 67, 5920–5827; b)
S. Xu, J. Liu, D. Hu, X. Bi, Green Chem. 2015, 17, 184–187; c) H. Huang, L.
Tang, Y. Xi, G. He, H. Zhu, Tetrahedron Lett. 2016, 57, 1873–1876.
[12] K. Dooleweerdt, H. Birkedal, T. Ruhland, T. Skrydstrup, J. Org. Chem. 2008,
73, 9447–9450.
[13] a) D. Chen, Q. Feng, Y. Yang, X.-M. Cai, F. Wang, S. Huang, Chem. Sci.
2017, 8, 1601–1606; b) Q. Feng, D. Chen, Y. M. Hong, F. Wang, S. Huang,
J. Org. Chem. 2018, 83, 7553–7558; c) D. Chen, Y. Zhang, X. Pan, F. Wang,
S. Huang, Adv. Synth. Catal. 2018, 360, 3607–3612.
[14] For selected recent examples, see: a) N. A. Isley, F. Gallou, B. H. Lipshutz,
J. Am. Chem. Soc. 2013, 135, 17707–17710; b) B. H. Lipshutz, S. Ghorai,
Green Chem. 2014, 16, 3660–3679; c) S. Handa, Y. Wang, F. Gallou, B. H.
Lipshutz, Science 2015, 349, 1087–1091; d) J. Feng, S. Handa, F. Gallou,
B. H. Lipshutz, Angew. Chem. Int. Ed. 2016, 55, 8979–8983; Angew. Chem.
2016, 128, 9125; e) S. Handa, M. P. Andersson, F. Gallou, J. Reilly, B. H.
Lipshutz, Angew. Chem. Int. Ed. 2016, 55, 4914–4918; Angew. Chem. 2016,
128, 4998; f) N. A. Isley, Y. Wang, F. Gallou, S. Handa, D. H. Aue, B. H.
Lipshutz, ACS Catal. 2017, 7, 8331–8337.
[15] a) P. A. Wilbon, F. Chu, C. Tang, Macromol. Rapid Commun. 2013, 34, 8–
37; b) K. Yao, C. Tang, Macromolecules 2013, 46, 1689–1712; c) K. Yao, J.
Wang, W. Zhang, J. S. Lee, C. Wang, F. Chu, X. He, C. Tang, Biomacromole-
cules 2011, 12, 2171–2177.
[16] B. H. Lipshutz, S. Ghorai, A. R. Abela, R. Moser, T. Nishikata, C. Duplais, A.
Krasovskiy, R. D. Gaston, R. C. Gadwood, J. Org. Chem. 2011, 76, 4379–
4391.
[17] a) J. Brals, J. D. Smith, F. Ibrahim, F. Gallou, S. Handa, ACS Catal. 2017, 7,
7245–7450; b) J. D. Smith, T. N. Ansari, M. P. Andersson, D. Yadagiri, F.
Ibrahim, S. Liang, G. B. Hammond, F. Gallou, S. Handa, Green Chem. 2018,
20, 1784–1790; c) L. Finck, J. Brals, B. Pavuluri, F. Gallou, S. Handa, J. Org.
Chem. 2018, 83, 7366–7372.
[18] a) B. H. Lipshutz, S. Ghorai, Aldrichim. Acta 2012, 45, 3–16; b) B. H. Lip-
shutz, S. Ghorai, Aldrichim. Acta 2008, 41, 59–72; c) P. Klumphu, B. H.
Lipshutz, J. Org. Chem. 2014, 79, 888–900.
[19] a) R. A. Sheldon, Green Chem. 2007, 9, 1273–1283; b) R. A. Sheldon,
I. W. E. Arends, U. Hanefeld in Green Chemistry and Catalysis, Wiley-VCH,
Weinheim, 2007; c) B. H. Lipshutz, N. A. Isley, J. C. Fennewald, E. D. Slack,
Angew. Chem. Int. Ed. 2013, 52, 10952–10958; Angew. Chem. 2013, 125,
11156; d) F. Roschangar, R. A. Sheldon, C. H. Senanayake, Green Chem.
2015, 17, 752–768.
Acknowledgments
Financial support provided by the Natural Science Foundation
of China (21502094 and 21602200), and the Natural Science
Foundation of the Jiangsu Higher Education Institutions of
China (17KJA220003) is warmly acknowledged. We are also
grateful for support by the Top-notch Academic Programs
Project of Jiangsu Higher Education Institutions (TAPP
PPZY2015C221), the Priority Academic Program Development
of Jiangsu Higher Education Institutions (PAPD), and advanced
analysis and testing center of Nanjing Forestry University.
Keywords: Ynamides · Rosin · Micellar catalysis · Alkynyl
bromides · Water chemistry
[1] For recent reviews on ynamide reactivity, see: a) F. Pan, C. Shu, L.-W. Ye,
Org. Biomol. Chem. 2016, 14, 9456–9465; b) G. Evano, C. Theunissen, M.
Lecomte, Aldrichim. Acta 2015, 48, 59–62; c) X.-N. Wang, H.-S. Yeom,
L.-C. Fang, S. He, Z.-X. Ma, B. L. Kedrowski, R. P. Hsung, Acc. Chem. Res.
2014, 47, 560–578; d) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu,
Y. Zhang, R. P. Hsung, Chem. Rev. 2010, 110, 5064–5106; e) G. Evano, A.
Coste, K. Jouvin, Angew. Chem. Int. Ed. 2010, 49, 2840–2859; Angew.
Chem. 2010, 122, 2902.
[2] For recent selected examples, see: a) B. Zhou, L. Li, X.-Q. Zhu, J.-Z. Yan,
Y.-L. Guo, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 4015–4019; Angew.
Chem. 2017, 129, 4073; b) W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q.
Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605–609;
Angew. Chem. 2017, 129, 620; c) L. Li, X. Chen, Z.-S. Wang, B. Zhou, X.
Liu, X. Lu, L.-W. Ye, ACS Catal. 2017, 7, 4004–4010; d) F. Pan, X.-L. Li, X.-
M. Chen, C. Shu, P.-P. Ruan, C.-H. Shen, X. Lu, L.-W. Ye, ACS Catal. 2016,
6, 6055–6062; e) T. Wang, T. R. Hoye, J. Am. Chem. Soc. 2016, 138, 13870–
13873; f) L. Hu, S. Xu, Z. Zhao, Y. Yang, Z. Peng, M. Yang, C. Wang, J.
Zhao, J. Am. Chem. Soc. 2016, 138, 13135–13138; g) T. Wang, D. Niu, T. R.
Hoye, J. Am. Chem. Soc. 2016, 138, 7832–7835; h) C. Shu, Y.-H. Wang, B.
Zhou, X.-L. Li, Y.-F. Ping, X. Lu, L.-W. Ye, J. Am. Chem. Soc. 2015, 137,
9567–9570; i) L. Li, B. Zhou, Y.-H. Wang, C. Shu, Y.-F. Pan, X. Lu, L.-W. Ye,
Angew. Chem. Int. Ed. 2015, 54, 8245–8249; Angew. Chem. 2015, 127,
8363.
[3] Z. Janousek, J. Collard, H. G. Viehe, Angew. Chem. Int. Ed. Engl. 1972, 11,
917–918; Angew. Chem. 1972, 84, 993.
[4] a) Y. Tu, X. Zeng, H. Wang, J. Zhao, Org. Lett. 2018, 20, 280–283; b) G.
Evano, K. Jouvin, A. Coste, Synthesis 2012, 45, 17–26; c) K. Jouvin, J.
Heimburger, G. Evano, Chem. Sci. 2012, 3, 756–760.
[5] J. Huang, H. Xiong, R. P. Hsung, C. Rameshkumar, J. A. Mulder, T. P. Grebe,
Org. Lett. 2002, 4, 2417–2420.
[6] a) T. Laird, Org. Process Res. Dev. 2012, 16, 1–2; b) P. J. Dunn in Pharma-
ceutical Process Development, (Eds.: J. A. Blacker, M. T. Williams), Royal
Society of Chemistry, London, 2011, chapter 6; c) C. Jimenez-Gonzales,
Received: October 28, 2018
Eur. J. Org. Chem. 0000, 0–0
4
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim