and disassembled states, which could be clearly seen as variations
in turbidity with the naked eye. The dynamic photoswitching
allowed azobenzene spheres to encapsulate fluorescent dyes
which need to be released in a non-contact fashion. The light-
responsive sphere system described in this investigation can be
applied to drug delivery and emerging separation systems
which require on-demand encapsulation/release at a specific
light wavelength.
This work was supported by the Global COE program from
the Ministry of Education, Culture, Sports, Science, and
Technology of Japanese Government. We are grateful to Prof.
T. Iyoda and Prof. K. Kamata for TEM measurements, as
well as Prof. T. Ikeda and Prof. A. Shishido for OM
measurements.
Notes and references
1 (a) L. Zhang and A. Eisenberg, J. Am. Chem. Soc., 1996, 118, 3168;
(b) A. Harada and K. Kataoka, Science, 1999, 283, 65;
(c) T. Hamada, Y. Sato, K. Yoshikawa and T. Nagasaki, Langmuir,
2005, 21, 7626; (d) J. Rodriguez-Hernandez and S. Lecommandoux,
J. Am. Chem. Soc., 2005, 127, 2026; (e) Y. Li, Y. He, X. Tong and
X. Wang, J. Am. Chem. Soc., 2005, 127, 2402; (f) S. Kobatake,
S. Takami, H. Muto, T. Ishikawa and M. Irie, Nature, 2007,
446, 778; (g) H. Lee, W. Wu, J. Oh, L. Mueller, G. Sherwood,
L. Peteanu, T. Kowalewski and K. Matyjaszewski, Angew. Chem.,
Int. Ed., 2007, 46, 2453; (h) M. Bedard, A. Skirtach and
´
G. Sukhorukov, Macromol. Rapid Commun., 2007, 28, 1517;
(i) S. Erokhina, L. Benassi, P. Bianchini, A. Diaspro, V. Erokhin
and M. P. Fontana, J. Am. Chem. Soc., 2009, 131, 9800;
(j) Y. Wang, P. Han, H. Xu, Z. Wang, X. Zhang and
A. Kabanov, Langmuir, 2010, 26, 709; (k) J. Hu, H. Yu, L. Gan
and X. Hu, Soft Matter, 2011, 7, 11345; (l) X. Zhang and C. Wang,
Chem. Soc. Rev., 2011, 40, 94; (m) R. Tong, H. Hemmati, R. Langer
and D. Kohane, J. Am. Chem. Soc., 2012, 134, 8848.
Fig. 4 (a) Changes of 1.3 Â 10À3 M EtO-Az-EG THF/H2O (4.0/8.2, v/v)
including 1.3 Â 10À5 M DPA in absorbance at 650 nm (orange triangle)
and fluorescence intensities at 407 (blue circle) and 532 nm (green square)
as a function of exposure time of UV light and subsequent visible
light. Fluorescence intensities in (a) were based on fluorescence spectral
changes in (d). (b) Schematic representation of release of fluorescent DPA
from the azobenzene sphere. (c) Emission (under 365 nm irradiation) of
suspensions containing EtO-Az-EG and DPA. [1] As-prepared suspension.
[2] Highly fluorescent solution obtained after UV light irradiation. [3]
Weakly fluorescent turbid suspension obtained after subsequent irradiation
with visible light. (d) Fluorescence spectral changes of the EtO-Az-EG
suspension including DPA upon irradiation with UV light and subsequent
visible light.
2 (a) W. Su, Y. Luo, Q. Yan, S. Wu, K. Han, Q. Zhang, Y. Gu and
Y. Li, Macromol. Rapid Commun., 2007, 28, 1251; (b) Y. Zhao and
J. He, Soft Matter, 2009, 5, 2686.
3 (a) T. Kunitake, Angew. Chem., Int. Ed. Engl., 1992, 31, 709;
(b) B. A. Cicciarelli, T. A. Hatton and K. A. Smith, Langmuir,
2007, 23, 4753; (c) A. Matsumura, K. Tsuchiya, K. Torigoe,
K. Sakai, H. Sakai and M. Abe, Langmuir, 2011, 27, 1610;
(d) J. Kuiper and J. Engberts, Langmuir, 2004, 20, 1152.
4 (a) G. S. Hartley, Nature, 1937, 40, 281; (b) K. Ichimura, Chem.
Rev., 2000, 100, 1847; (c) A. Natansohn and P. Rochon, Chem.
Rev., 2002, 102, 4139.
5 (a) T. Ikeda and O. Tsutsumi, Science, 1995, 268, 1873;
(b) S. Kadota, K. Aoki, S. Nagano and T. Seki, J. Am. Chem.
Soc., 2005, 127, 8266; (c) H. Yu, T. Iyoda and T. Ikeda, J. Am.
Chem. Soc., 2006, 128, 11010; (d) H. Yu, J. Li, T. Ikeda and
T. Iyoda, Adv. Mater., 2006, 18, 2213.
60 times than that of the non-irradiated initial value.
Simultaneously, the scattered light intensity became almost
zero (Fig. 4a and Fig. S8, ESIw), confirming disruption of the
large amount of spheres and the resulting release of DPA into
the surrounding media.
6 (a) Y. Norikane, Y. Hirai and M. Yoshida, Chem. Commun., 2011,
47, 1770; (b) H. Akiyama and M. Yoshida, Adv. Mater., 2012,
24, 2353.
7 (a) Photoreactive Organic Thin Films, ed. Z. Sekkat and W. Knoll,
Academic Press, Elsevier Science, USA, 2002; (b) N. J. Bunce,
G. Ferguson, C. L. Forber and G. J. Stachnyk, J. Org. Chem.,
1987, 52, 394.
8 M. R. Han, D. Hashizume and M. Hara, Acta Crystallogr., Sect.
E: Struct. Rep. Online, 2006, 62, O3001.
9 (a) M. Kasha, Radiat. Res., 1963, 20, 55; (b) X. Song, J. Perlstein
and D. Whitten, J. Am. Chem. Soc., 1997, 119, 9144; (c) H. Menzel,
B. Weichart, A. Schmidt, S. Paul, W. Knoll, J. Stumpe and
T. Fischer, Langmuir, 1994, 10, 1926.
In reverse, exposure to visible light gave rise to approximately
70 times reduction of blue fluorescence intensity along with a
recovery of scattered light intensity ([2] - [3] in Fig. 4a, c and d).
Additional TEM and DLS experiments exhibited substantial
changes in spherical size in response to a chosen light wavelength
(Fig. S7 and S9, ESIw). Photoswitching of fluorescence intensity
was successfully performed through the reversible trans 2 cis
photoisomerization of EtO-Az-EG, and the resulting encap-
sulation and release of fluorescent dyes under UV and visible
light irradiation (Fig. S10, ESIw).
10 M. Han, T. Honda, D. Ishikawa, E. Ito, M. Hara and
Y. Norikane, J. Mater. Chem., 2011, 21, 4696.
11 (a) S. Hamai and F. Hirayama, J. Phys. Chem., 1983, 87, 83;
(b) X. Zhang, G. Yuan, Q. Li, B. Wang, X. Zhang, R. Zhang,
J. Chang, C. Lee and S. Lee, Chem. Mater., 2008, 20, 6945.
In summary, we have demonstrated that a rationally
designed azobenzene self-assembled into spherical aggregates
in a THF–H2O solution. The synthetic spheres underwent
light-directed morphological transformation between spherical
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 11763–11765 11765