Organic Letters
Letter
Silberstein, A. L.; Komaromi, A.; Blackburn, T.; Ramgren, S. D.; Houk,
K. N.; Snieckus, V.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 6352.
(12) For amide to aldehyde conversion using the Schwartz reagent,
see: (a) Zhao, Y.; Snieckus, V. Org. Lett. 2014, 16, 390. (b) Zhao, Y.;
Snieckus, V. US 8,168,833, 2012. For other transformations of amides,
see: (c) Larock, R. C. Comprehensive Organic Transformations. A Guide
to Functional Group Preparations, 2nd ed.; Wiley: New York, 2010.
(13) Zhao, Y. Ph.D. Thesis, Queen’s University, Kingston, ON,
Canada, 2010.
(14) (a) Beak, P.; Brown, R. A. J. Org. Chem. 1982, 47, 34. (b) Ludt,
R. E.; Griffiths, J. S.; McGrath, K. N.; Hauser, C. R. J. Org. Chem. 1973,
38, 1668.
(15) These substituent effect trends are quite similar as those found
in the amide-directed C-OMe activation/arylation reaction of N,N-
diethyl o-OMe benzamides and naphthamides; see refs 10 and 13.
(16) Sivaev, I. B.; Bregadze, V. I. Coord. Chem. Rev. 2014, 270−271,
75.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to NSERC Canada for support of our synthetic
efforts under the Discovery Grant (DG) program and thank Dr.
Francoise Sauriol (Queen’s University) for assistance in NMR
spectroscopy and Dr. Jiaxi Wang (Queen’s University) for
discussion of MS.
(17) Wiberg, K. B. Acc. Chem. Res. 1996, 29, 229.
(18) Ruhland, K. Eur. J. Org. Chem. 2012, 2683.
(19) Wang, Q. W.; Mayer, M. F.; Brennan, C.; Yang, F. K.; Hossain,
M. M.; Grubisha, D. S.; Bennett, D. Tetrahedron 2000, 56, 4881.
(20) Nakao, Y.; Chen, J. S.; Tanaka, M.; Hiyama, T. J. Am. Chem. Soc.
2007, 129, 11694.
(21) Grimsdale, A. C.; Mullen, K. Macromol. Rapid Commun. 2007,
28, 1676.
(22) From commercial anthranilic acid, see: (a) Clayden, J.; Stimson,
C. C.; Keenan, M. Chem. Commun. 2006, 1393. (b) Kim, Y. K.; Lee, S.
J.; Ahn, K. H. J. Org. Chem. 2000, 65, 7807.
(23) For DoM reactions on N,N-diethyl o-NR2 anthranilamides to
derive useful 1,2,3-trisubstituted aromatics, see: (a) MacNeil, S. L.;
Wilson, B. J.; Snieckus, V. Org. Lett. 2006, 8, 1133. (b) Rios, R.;
Jimeno, C.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124,
10272. (c) Hjelmencrantz, A.; Berg, U. J. Org. Chem. 2002, 67, 3585.
Also see ref 22a. For combined DoM−DreM reactions on compound
2a, see: (d) Tilly, D.; Fu, J. M.; Zhao, B. P.; Alessi, M.; Castanet, A. S.;
Snieckus, V.; Mortier, J. Org. Lett. 2010, 12, 68. With few exceptions,
all compounds in Scheme 1 are potentially primed for this as well as
yet unknown metalation chemistry.
(24) (a) Snieckus, V.; Anctil, E. J. G. Metal-Catalyzed Cross-Coupling
Reactions and More; Wiley: New York, 2014; Vol. 3, p 1067. (b) Board,
J.; Cosman, J. L.; Rantanen, T.; Singh, S. P.; Snieckus, V. Platinum
Metals Rev. 2013, 57, 234. (c) Anctil, E. J. G.; Snieckus, V. J.
Organomet. Chem. 2002, 653, 150.
REFERENCES
■
(1) Selected recent publications: (a) Kuhl, N.; Hopkinson, M. N.;
Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236.
(b) Yu, J.-Q.; Shi, Z.; Eds. Top. Curr. Chem. 2010, 292, 1. (c) Alberico,
D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (d) Li, B. J.;
Yu, D. G.; Sun, C. L.; Shi, Z. J. Chem.Eur. J. 2011, 17, 1728.
(e) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.;
Resmerita, A. M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.
(f) Yu, D. G.; Li, B. J.; Shi, Z. J. Acc. Chem. Res. 2010, 43, 1486.
(g) Ueno, S.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2007, 129,
6098.
(2) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255. For
comparison, bond enthalpies ΔH298: Ph-NH2 = 104 kcal/mol vs Ph-Br
= 84 kcal/mol.
(3) Catalytic methods: (a) Felpin, F. X.; Nassar-Hardy, L.; Le
Callonnec, F.; Fouquet, E. Tetrahedron 2011, 67, 2815. (b) Taylor, J.
G.; Moro, A. V.; Correia, C. R. D. Eur. J. Org. Chem. 2011, 1403.
(c) Roglans, A.; Pla-Quintana, A.; Moreno-Manas, M. Chem. Rev.
2006, 106, 4622. (d) Zhang, X. Q.; Wang, Z. X. J. Org. Chem. 2012, 77,
3658. (e) Xie, L. G.; Wang, Z. X. Angew. Chem., Int. Ed. 2011, 50,
4901. (f) Reeves, J. T.; Fandrick, D. R.; Tan, Z. L.; Song, J. J.; Lee, H.;
Yee, N. K.; Senanayake, C. H. Org. Lett. 2010, 12, 4388. (g) Blakey, S.
B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 6046.
(h) Wenkert, E.; Han, A. L.; Jenny, C. J. J. Chem. Soc., Chem. Commun.
1988, 975. (i) Saeki, T.; Son, E. C.; Tamao, K. Org. Lett. 2004, 6, 617.
(j) Liu, J. Q.; Robins, M. J. Org. Lett. 2004, 6, 3421. (k) Zhu, M. K.;
Zhao, J. F.; Loh, T. P. Org. Lett. 2011, 13, 6308.
(4) Stoichiometric cleavages and insertions by transition metals:
(a) Koreeda, T.; Kochi, T.; Kakiuchi, F. J. Am. Chem. Soc. 2009, 131,
7238. (b) Cameron, T. M.; Abboud, K. A.; Boncella, J. M. Chem.
Commun. 2001, 1224. (c) Bonanno, J. B.; Henry, T. P.; Neithamer, D.
R.; Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem. Soc. 1996, 118,
5132.
(5) Kakiuchi, F.; Usui, M.; Ueno, S.; Chatani, N.; Murai, S. J. Am.
Chem. Soc. 2004, 126, 2706.
(6) (a) Kakiuchi, F.; Matsuura, Y.; Kan, S.; Chatani, N. J. Am. Chem.
Soc. 2005, 127, 5936. (b) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.;
Murai, S. J. Am. Chem. Soc. 2003, 125, 1698.
(7) Mechanistic studies: (a) Ueno, S.; Mizushima, E.; Chatani, N.;
Kakiuchi, F. J. Am. Chem. Soc. 2006, 128, 16516. (b) Koreeda, T.;
Kochi, T.; Kakiuchi, F. Organometallics 2013, 32, 682. Also see ref 4a.
(8) (a) Snieckus, V.; Macklin, T. Handb. C−H Transform. 2005, 1,
106. (b) Hartung, C. G.; Snieckus, V. Mod. Arene Chem. 2002, 330.
(c) Snieckus, V. Chem. Rev. 1990, 90, 879. (d) Whisler, M. C.;
MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem., Int. Ed. 2004, 43,
2206.
(9) Kaye, G. W. C.; Laby, T. H. Tables of Physical and Chemical
Constants, 16th ed.; Longman: New York, 1995.
(10) Zhao, Y.; Snieckus, V. Submitted for publication.
(11) (a) Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed. 2009, 48,
3565. (b) Antoft-Finch, A.; Blackburn, T.; Snieckus, V. J. Am. Chem.
Soc. 2009, 131, 17750. (c) Quasdorf, K. W.; Antoft-Finch, A.; Liu, P.;
D
dx.doi.org/10.1021/ol501180q | Org. Lett. XXXX, XXX, XXX−XXX