Organometallics
Article
every 5−30 min for 3−5 half-lives. The integration for the NiOCHO
resonance of 5 or 6 was compared to that of the internal standard,
whereas the integration for the phosphorus resonance of 6-d was
compared to that of the external standard.
4, 323−325. (i) Mellmann, D.; Sponholz, P.; Junge, H.; Beller, M.
Chem. Soc. Rev. 2016, 45, 3954−3988.
(2) For some recent examples, see: (a) Wienhofer, G.; Sorribes, I.;
̈
Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M.
J. Am. Chem. Soc. 2011, 133, 12875−12879. (b) Shen, R.; Chen, T.;
Zhao, Y.; Qiu, R.; Zhou, Y.; Yin, S.; Wang, X.; Goto, M.; Han, L.-B. J.
X-ray Structure Determination. Single crystals of 3 and 4 were
obtained from recrystallization in toluene/n-hexane. Crystal data
collection and refinement parameters are provided in the Supporting
Information. Intensity data were collected at 150 K on a standard
Bruker SMART6000 CCD diffractometer using graphite-monochro-
mated Cu Kα radiation, λ = 1.54178 Å. The data frames were
processed using the program SAINT. The data were corrected for
decay, Lorentz, and polarization effects as well as absorption and beam
corrections based on the multiscan technique. The structure was
solved by a combination of direct methods in SHELXTL and the
difference Fourier technique and refined by full-matrix least-squares on
F2 for reflections. Non-hydrogen atoms were refined with anisotropic
displacement parameters. The H atoms were either located or
calculated and subsequently treated with a riding model. No solvent
of crystallization is present in the lattice for both structures.
̌
Am. Chem. Soc. 2011, 133, 17037−17044. (c) Broggi, J.; Jurcík, V.;
Songis, O.; Poater, A.; Cavallo, L.; Salwin, A. M. Z.; Cazin, C. S. J. J.
Am. Chem. Soc. 2013, 135, 4588−4591. (d) Zeng, M.; Li, L.; Herzon,
S. B. J. Am. Chem. Soc. 2014, 136, 7058−7067. (e) Guo, S.; Yang, P.;
Zhou, J. Chem. Commun. 2015, 51, 12115−12117. (f) Touge, T.; Nara,
H.; Fujiwhara, M.; Kayaki, Y.; Ikariya, T. J. Am. Chem. Soc. 2016, 138,
10084−10087.
(3) Pruett, R. L.; Kacmarcik, R. T. Organometallics 1982, 1, 1693−
1699.
(4) (a) Kaesz, H. D.; Saillant, R. B. Chem. Rev. 1972, 72, 231−281.
(b) Eberhardt, N. A.; Guan, H. Chem. Rev. 2016, 116, 8373−8426.
(5) (a) Bar, R.; Sasson, Y.; Blum, J. J. Mol. Catal. 1982, 16, 175−180.
(b) Neary, M. C.; Parkin, G. Dalton Trans. 2016, 45, 14645−14650.
(6) (a) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95,
259−272. (b) Leitner, W. Angew. Chem., Int. Ed. Engl. 1995, 34, 2207−
ASSOCIATED CONTENT
* Supporting Information
■
́
2221. (c) Jessop, P. G.; Joo, F.; Tai, C.-C. Coord. Chem. Rev. 2004,
S
248, 2425−2442. (d) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc.
Rev. 2011, 40, 3703−3727. (e) Li, Y.-N.; Ma, R.; He, L.-N.; Diao, Z.-F.
Catal. Sci. Technol. 2014, 4, 1498−1512. (f) Wang, W.-H.; Himeda, Y.;
Muckerman, J. T.; Manbeck, G. F.; Fujita, E. Chem. Rev. 2015, 115,
12936−12973.
The Supporting Information is available free of charge on the
Kinetic data, plots of these data, NMR spectra of the
nickel pincer complexes, and crystallographic details
Crystallographic data (CIF)
Optimized Cartesian coordinates for compounds 3
(7) (a) Merrifield, J. H.; Gladysz, J. A. Organometallics 1983, 2, 782−
784. (b) Darensbourg, D. J.; Wiegreffe, P.; Riordan, C. G. J. Am. Chem.
Soc. 1990, 112, 5759−5762. (c) Darensbourg, D. J.; Wiegreffe, H. P.;
Wiegreffe, P. W. J. Am. Chem. Soc. 1990, 112, 9252−9257. (d) Creutz,
C.; Chou, M. H. J. Am. Chem. Soc. 2009, 131, 2794−2795.
(8) (a) Boddien, A.; Mellmann, D.; Gartner, F.; Jackstell, R.; Junge,
̈
H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011,
333, 1733−1736. (b) Bielinski, E. A.; Lagaditis, P. O.; Zhang, Y.;
AUTHOR INFORMATION
Corresponding Authors
■
Mercado, B. Q.; Wurtele, C.; Bernskoetter, W. H.; Hazari, N.;
̈
Schneider, S. J. Am. Chem. Soc. 2014, 136, 10234−10237. (c) Nova, A.;
Taylor, D. J.; Blacker, A. J.; Duckett, S. B.; Perutz, R. N.; Eisenstein, O.
Organometallics 2014, 33, 3433−3442. (d) Oldenhof, S.; Lutz, M.; de
Bruin, B.; van der Vlugt, J. I.; Reek, J. N. H. Chem. Sci. 2015, 6, 1027−
1034. (e) Chen, H.-Y. T.; Wang, C.; Wu, X.; Jiang, X.; Catlow, C. R.
A.; Xiao, J. Chem. - Eur. J. 2015, 21, 16564−16577. (f) Ramakrishnan,
S.; Waldie, K. M.; Warnke, I.; De Crisci, A. G.; Batista, V. S.;
Waymouth, R. M.; Chidsey, C. E. D. Inorg. Chem. 2016, 55, 1623−
1632.
ORCID
Notes
The authors declare no competing financial interest.
(9) (a) Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. J. Am.
Chem. Soc. 2010, 132, 8872−8873. (b) Huang, F.; Zhang, C.; Jiang, J.;
Wang, Z.-X.; Guan, H. Inorg. Chem. 2011, 50, 3816−3825.
(c) Chakraborty, S.; Patel, Y. J.; Krause, J. A.; Guan, H. Polyhedron
2012, 32, 30−34. (d) Chakraborty, S.; Zhang, J.; Patel, Y. J.; Krause, J.
A.; Guan, H. Inorg. Chem. 2013, 52, 37−47. (e) Chakraborty, S.;
Bhattacharya, P.; Dai, H.; Guan, H. Acc. Chem. Res. 2015, 48, 1995−
2003. (f) Jonasson, K. J.; Wendt, O. F. Chem. - Eur. J. 2014, 20,
11894−11902.
ACKNOWLEDGMENTS
■
We thank the National Natural Science Foundation of China
(No. 21571052), the Key Science and Technology Project of
Henan Province (No. 152102210085), and the U.S. National
Science Foundation (CHE-1464734) for support of this
research. We also thank Prof. Gregory Girolami (University
of Illinois−Urbana−Champaign) for sharing the method of
calculating absolute errors in activation parameters. Crystallo-
graphic data were collected on a Bruker SMART6000
diffractometer, which was funded by an NSF-MRI grant
(CHE-0215950).
(10) Pandey, K. K. Coord. Chem. Rev. 1995, 140, 37−114.
(11) (a) Commereuc, D.; Douek, I.; Wilkinson, G. J. Chem. Soc. A
1970, 1771−1778. (b) Palazzi, A.; Busetto, L.; Graziani, M. J.
Organomet. Chem. 1971, 30, 273−277. (c) Albano, V. G.; Bellon, P. L.;
Ciani, G. J. Organomet. Chem. 1971, 31, 75−87. (d) Komiya, S.;
Yamamoto, A. Bull. Chem. Soc. Jpn. 1976, 49, 784−787. (e) Pandey, K.
K.; Garg, K. H.; Tiwari, S. K. Polyhedron 1992, 11, 947−950. (f) Chu,
H. S.; Lau, C. P.; Wong, K. Y.; Wong, W. T. Organometallics 1998, 17,
2768−2777. (g) Field, L. D.; Lawrenz, E. T.; Shaw, W. J.; Turner, P.
Inorg. Chem. 2000, 39, 5632−5638. (h) Gandhi, T.; Nethaji, M.;
Jagirdar, B. R. Inorg. Chem. 2003, 42, 667−669. (i) Gandhi, T.;
Nethaji, M.; Jagirdar, B. R. Inorg. Chem. 2003, 42, 4798−4800.
(j) Gandhi, T.; Jagirdar, B. R. Inorg. Chem. 2005, 44, 1118−1124.
(k) Nanishankar, H. V.; Dutta, S.; Nethaji, M.; Jagirdar, B. R. Inorg.
Chem. 2005, 44, 6203−6210. (l) Albertin, G.; Antoniutti, S.; Roveda,
REFERENCES
(1) (a) Enthaler, S. ChemSusChem 2008, 1, 801−804. (b) Joo,
■
́
F.
ChemSusChem 2008, 1, 805−808. (c) Johnson, T. C.; Morris, D. J.;
Wills, M. Chem. Soc. Rev. 2010, 39, 81−88. (d) Enthaler, S.; von
Langermann, J.; Schmidt, T. Energy Environ. Sci. 2010, 3, 1207−1217.
(e) Loges, B.; Boddien, A.; Gartner, F.; Junge, H.; Beller, M. Top.
̈
Catal. 2010, 53, 902−914. (f) Czaun, M.; Goeppert, A.; May, R.;
Haiges, R.; Prakash, G. K. S.; Olah, G. A. ChemSusChem 2011, 4,
1241−1248. (g) Grasemann, M.; Laurenczy, G. Energy Environ. Sci.
2012, 5, 8171−8181. (h) Enthaler, S.; Loges, B. ChemCatChem 2012,
E
Organometallics XXXX, XXX, XXX−XXX