6696
B. Gabriele et al. / Tetrahedron Letters 53 (2012) 6694–6696
Drissel, G. M. In Kirk-Othmer Encyclopedia of Chemical Technology; Grayson, M.,
Eckroth, D., Bushey, G. J., Campbell, L., Klingsberg, A., van Nes, L., Eds.; Wiley-
Interscience: New York, 1978; Vol. 4, p 775. 3rd ed.
N-phenyl-2-ethynylbenzamide 1d, which was converted into 2-
phenyl-3-(2-morpholino-2-oxoethylidene)isoindolin-1-one 3da in
only 35% yield (Z/E ratio = 9.7, Table 1, entry 4). On the other hand,
the use of 1a with other nucleophilic secondary amines, such as
dibutylamine 2b, pyrrolidine 2c, and piperidine 2d, led to high to
excellent yields (80–91%) of the corresponding 3-[(dialkylcarba-
moyl)methylene]isoindolin-1-ones 3ab, 3ac, and 3ad, as shown
in Table 1, entries 5–7.8–11
In conclusion, we have reported a convenient and direct
approach to the synthesis of 3-[(dialkylcarbamoyl)methylene]iso-
indolin-1-ones 3 by a novel cascade process, involving PdI2-cata-
lyzed oxidative monoaminocarbonylation of the triple bond of
N-alkyl-2-ethynylbenzamides 1 followed by 5-endo-dig intramo-
lecular conjugate addition. Our method represents an interesting
example of direct synthesis of functionalized heterocyclic deriva-
tives through the sequential multicomponent assembling of simple
building blocks.
8. Typical procedure for the oxidative carbonylative annulation of N-substituted
2-ethynylbenzamides 1 to 3-(dialkylcarbamoylmethylene)isoindolin-1-ones 3:
A 250 mL stainless steel autoclave was charged in the presence of air with PdI2
(5.0 mg, 1.39 ꢀ 10ꢁ2 mmol), KI (23.0 mg, 1.39 ꢀ 10ꢁ1 mmol), and a solution of
1 (0.70 mmol) in a mixture MeCN–amine (MeCN: 9.6 mL; amine 2: 4.8 mL). The
autoclave was sealed and, while the mixture was stirred, the autoclave was
pressurized with CO (32 atm) and air (up to 40 atm). After being stirred at
100 °C for the required time (see Table 1), the autoclave was cooled, degassed,
and opened. When necessary, the mixture was filtered (to remove the solid
oxamide by-product deriving from double carbonylation of 2) and the solid
washed with cold Et2O. The solvent was evaporated, and the products were
purified by column chromatography on silica gel (eluent: chloroform for 3aa;
7:3 hexane–AcOEt for 3ca and 3da) or neutral alumina (eluent: 8:2 hexane–
AcOEt for 3ba; 7:3 hexane–AcOEt for 3ab and 3ad; 9:1 hexane–AcOEt for 3ac)
to give pure isoindolinones 3, which were fully characterized by spectroscopic
techniques and elemental analysis.7 The molecular structure of (Z)-2-tert-
butyl-3-(2-morpholino-2-oxoethylidene)isoindolin-1-one was confirmed by X-
ray diffraction analysis, which will be reported in due course.
9. Characterization data for selected products: For 3aa (mixture of diastereomers
Z/E, Z/E ratio ca. 2.0, determined by 1H NMR): Pale yellow oil. IR (film):
m
= 2960
(m), 2928 (m), 1712 (s), 1684 (vs), 1435 (m), 1400 (w), 1231 (m), 1115 (m),
1040 (w), 769 (m), 699 (w) cmꢁ1 1H NMR (300 MHz, CDCl3): d = 8.12–8.01 [Z
Acknowledgments
;
(m, 1 H, aromatic)], 7.88-7.76 [Z (m, 1 H, aromatic) + E (m, 1 H, aromatic)], 7.70-
7.46 [Z (m, 2 H, aromatic) + E (m, 3 H, aromatic)], 6.01 [E (s, 1 H, = CH)], 5.81 [Z
(s, 1 H, = CH)], 4.02 [E (t, J = 7.5, 2 H, NCH2)], 3.88-3.55 [Z (m, 2 H, NCH2) + Z (m,
8 H, morpholine ring) + E (m, 8 H, morpholine ring)], 1.73-1.58 [Z (m, 2 H,
NCH2CH2)], 1.58-1.23 [E (m, 2 H, NCH2CH2) + Z (m, 2 H, CH2CH3) + E (m, 2 H,
CH2CH3)], 1.01-0.88 [Z (m, 3 H, Me) + E (m, 3 H, Me)]; 13C NMR (75 MHz,
CDCl3): d = 168.1, 166.7, 165.3, 164.8, 142.2, 139.9, 137.2, 134.0, 132.5, 132.2,
130.4, 130.14, 130.07, 128.4, 124.7, 123.4, 123.1, 119.5, 99.5, 96.4, 66.8, 66.7,
66.6, 47.2, 47.1, 42.1, 41.9, 40.7, 39.2, 30.7, 30.3, 20.2, 20.0, 13.9, 13.8; GC-MS
(EI, 70 eV): m/z = 314 (M + , 12), 271 (5), 228 (100), 210 (11), 200 (48), 186 (11),
172 (32), 159 (12), 158 (12), 146 (6), 130 (34), 114 (4), 102 (8), 89 (7); anal.
calcd for C18H22N2O3 (314.38): C. 68.77; H. 7.05; N, 8.91; found C, 68.84; H,
7.04; N, 8.89. For 3ca (E isomer): Colorless solid. Mp = 145–146 °C IR (KBr):
Thanks are due to the European Commission, FSE (Fondo Sociale
Europeo) and Calabria Region for a fellowship grant to R.M.
References and notes
1. Gabriele, B.; Salerno, G.; Veltri, L.; Costa, M. J. Organomet. Chem. 2011, 622, 84–
88.
2. (a) Gabriele, B.; Salerno, G.; Plastina, P.; Costa, M.; Crispini, A. Adv. Synth. Catal.
2004, 346, 351–358; (b) Gabriele, B.; Salerno, G.; Plastina, P. Lett. Org. Chem.
2004, 1, 134–136; (c) Gabriele, B.; Plastina, P.; Salerno, G.; Costa, M. Synlett
2005, 935–938; (d) Gabriele, B.; Salerno, G.; Veltri, L.; Mancuso, R.; Li, Z.;
Crispini, A.; Bellusci, A. J. Org. Chem. 2006, 71, 7895–7898; (e) Gabriele, B.;
Plastina, P.; Salerno, G.; Mancuso, R. Synthesis 2006, 4247–4251; (f) Gabriele,
B.; Plastina, P.; Salerno, G.; Mancuso, R.; Costa, M. Org. Lett. 2007, 9, 3319–
3322; (g) Plastina, P.; Gabriele, B.; Salerno, G. Synthesis 2007, 3083–3087.
3. 3-Methyleneisoindolin-1-one derivatives are an important class of
heterocycles. In fact, several molecules incorporating the 3-
methyleneisoindolin-1-one core have shown interesting pharmacological
activities; for recent examples, see: (a) Abdou, W. M.; Khidre, R. E.; Barghash,
R. F. Synth. Commun. 2012, 42, 1967–1978; (b) Del Olmo, E.; Barboza, B.; Lopez-
Perez, J. L.; San Feliciano, A.; Chiaradia, L. D.; Moreno, A.; Benito, A.; Carrero-
Lerida, J.; Gonzalez-Pacanowska, D.; Ruiz-Perez, L. M.; Munoz, V.; Gimenez, A.;
Martinez, A. R. Eur. J. Med. Chem. 2011, 46, 5379–5386; (c) Zhu, X.; Greig, N. H.;
Yu, Q.-s.; Utsuki, T.; Holloway, H. W.; Lahiri, D. K.; Brossi, A. Heterocycles 2004,
64, 93–100; (d) Del Olmo, E.; Armas, M. G.; Lopez-Perez, J. L.; Munoz, V.;
Deharo, E.; San Feliciano, A. Bioorg. Med. Chem. Lett. 2001, 11, 2123–2126; (e)
Cid, H. M. B.; Traenkle, C.; Baumann, K.; Pick, R.; Mies-Klomfass, E.; Kostenis, E.;
Mohr, K.; Holzgrabe, U. J. Med. Chem. 2000, 43, 2155–2164.
4. N-substituted 2-ethynylbenzamides 1 were easily prepared from commercially
available 2-iodobenzoic acid through conversion into the corresponding acyl
chloride followed by amidation with the suitable amine, Sonogashira coupling
with trimethylsilylacetylene and deprotection, as reported in the literature:
Varela-Fernández, A.; Varela, J. A.; Saá, C. Adv. Synth. Catal. 2011, 353, 1933–
1937.
5. (a) Li, D.-D.; Yuan, T.-T.; Wang, G.-W. Chem. Commun. 2011, 47, 12789–12791;
(b) Wrigglesworth, J. W.; Cox, B.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Org.
Lett. 2011, 13, 5326–5329.
m
= 2979 (w), 2954 (w), 2855 (w), 1708 (s), 1637 (vs), 1433 (m), 1374 (w), 1301
(w), 1232 (m), 1115 (m), 1020 (w), 772 (m), 699 (w) cmꢁ1 1H NMR (300 MHz,
;
CDCl3): d = 7.79-7.71 (m, 2 H, aromatic), 7.56-7.43 (m, 2 H, aromatic), 6.14 (s, 1
H, = CH), 3.86-3.52 (m, 8 H, morpholine ring), 1.78 (s, 9 H, t-Bu); 13C NMR
(75 MHz, CDCl3): d = 166.1, 160.9, 141.0, 134.4, 132.3, 130.0, 128.1, 122.99,
122.97, 104.5, 67.3, 66.5, 57.8, 42.1, 40.7, 30.3; GC-MS (EI, 70 eV): m/z = 314
(M+, 6), 258 (3), 228 (2), 200 (41), 172 (100), 145 (13), 130 (28), 114 (8), 102 (6),
86 (22); anal. calcd for C18H22N2O3 (314.38): C. 68.77; H. 7.05; N, 8.91; found C,
68.82; H, 7.03; N, 8.90. For 3ad (mixture of diastereomers Z/E, Z/E ratio ca. 1.0,
determined by 1H NMR): Pale yellow oil. IR (film):
m = 2934 (m), 2956 (m), 1713
(s), 1652 (vs), 1470 (m), 1252 (m), 1023 (m), 953 (w), 770 (m), 698 (w) cmꢁ1
;
1H NMR (300 MHz, CDCl3): d = 8.03-7.96 [Z (m, 1 H, aromatic)], 7.86-7.77 [Z (m,
1 H, aromatic) + E (m, 1 H, aromatic)], 7.69-7.62 [E (m, 1 H, aromatic)], 7.61-
7.46 [Z (m, 2 H, aromatic) + E (m, 2 H, aromatic)], 6.04 [E (s, 1 H, = CH)], 5.83 [Z
(s,
1 H, = CH)], 3.99 [E (t, J = 7.6, 2 H, NCH2CH2)], 3.83-3.49 [Z (m, 2 H,
NCH2CH2) + Z (m, 4 H, CH2NCH2) + E (m, 4 H, CH2NCH2)], 1.75-1.24 [E (m, 10 H,
CH2CH2CH3 + CH2CH2NCH2CH2CH2) + Z (m, 10 H, CH2CH2CH3 + CH2CH2NCH2-
CH2CH2)], 0.96 [Z or E (t, J = 7.3, 3 H, Me)], 0.92 [E or Z (t, J = 7.3, 3 H, Me)]; 13C
NMR (75 MHz, CDCl3): d = 168.1, 166.8, 165.0, 164.5, 140.9, 138.7, 137.4, 134.3,
132.3, 132.0, 130.1, 129.9, 124.5, 123.3, 123.1, 119.4, 111.7, 109.4, 101.0, 97.9,
48.0, 47.9, 42.8, 42.5, 40.7, 39.2, 30.7, 30.4, 26.7, 26.4, 25.8, 25.5, 24.58, 24.53,
20.2, 20.1, 13.82, 13.78; GC-MS (EI, 70 eV): m/z = 312 (M+, 35), 283 (3), 269
(13), 239 (8), 228 (100), 210 (17), 201 (59), 200 (69), 186 (30), 172 (56), 159
(67), 146 (13), 130 (69), 112 (11), 102 (18), 84 (72); anal. calcd for C19H24N2O2
(312.41): C, 73.05; H, 7.74; N, 8.97; found C, 73.12; H, 7.72; N, 8.99.
10. The reaction worked to only
a very little extent with non-nucleophilic
secondary amines, such as hindered amines like diisopropylamine, while
primary amines could not be used owing to their transformation into ureas
according to a known reactivity.11
6. Kondo, Y.; Shiga, F.; Murata, N.; Sakamoto, T.; Yamanaka, H. Tetrahedron 1994,
50, 11803–11812.
7. These conditions (32 atm of CO together with 9 total atm of air, considering
that the autoclave was loaded under 1 atm of air) corresponded to 78.0% of CO
in air and were outside the explosion limits for CO in air (ca. 16–70% at 18–
20 °C and atmospheric pressure, 14.8–71.4% at 100 °C and atmospheric
pressure. At higher total pressure, the range of flammability decreases: for
example, at 20 atm and 20 °C the limits are ca. 19 and 60%. See: Bartish, C. M.;
11. (a) Gabriele, B.; Mancuso, R.; Salerno, G.; Costa, M. Chem. Commun. 2003, 486–
487; (b) Gabriele, B.; Salerno, G.; Mancuso, R.; Costa, M. J. Org. Chem. 2004, 69,
4741–4750; (c) Della Ca’, N.; Bottarelli, P.; Dibenedetto, A.; Aresta, M.; Gabriele,
B.; Salerno, G.; Costa, M. J. Catal. 2011, 282, 120–127.