J. Zhao, H. Jiang / Tetrahedron Letters 53 (2012) 6999–7002
7001
Table 2 (continued)
Entry
Alkyne
Amine
Product no.
Yieldb (%)
NH2
2a
14
3ia
3ja
0
0
O2N
1i
NH2
15
1j
2a
a
Reagents and conditions: alkyne (2 mmol), amine (2 mmol), CuI (0.1 mmol), P = 2 MPa, 90 °C.
Isolated yields.
b
2. (a) Matsunaga, H.; Ishizuka, T.; Kunieda, T. Tetrahedron 2005, 61, 8073; (b)
Vicario, J. L.; Badia, D.; Carrillo, L.; Reyes, E.; Etxebarria, J. Curr. Org. Chem. 2005,
9, 219.
3. (a) Mukhtar, T. A.; Wright, G. D. Chem. Rev. 2005, 105, 529; (b) Renslo, A. R.;
Luehr, G. W.; Gordeev, M. F. Bioorg. Med. Chem. Lett. 2006, 14, 4227; (c) Osa, Y.;
Hikima, Y.; Sato, Y.; Takino, K.; Ida, Y.; Hirono, S.; Nagase, H. J. Org. Chem. 2005,
70, 5737.
R2
O
HN
R2
NH2
R2
CO2
CuI
Cu I
R1
O
N
+
R1
R1
R1
R1
4. (a) Paz, J.; Perez-Balado, C.; Iglesias, B.; Munoz, L. J. Org. Chem. 2010, 75, 3037;
(b) Schindler, C. S.; Forster, P. M.; Carreira, E. M. Org. Lett. 2010, 12, 4102; (c)
Kojima, N.; Nishijima, S.; Tanaka, T. Synlett 2009, 3171; (d) Liu, J. M.; Peng, X.
G.; Liu, J. H.; Zheng, S. Z.; Sun, W.; Xia, C. G. Tetrahedron Lett. 2007, 48, 929.
5. (a) Huang, K.; Sun, C. L.; Shi, Z. J. Chem. Soc. Rev. 2011, 40, 2435; (b) Riduan, S.
N.; Zhang, Y. G. Dalton T 2010, 39, 3347; (c) Sakakura, T.; Sakakura, J. C.; Yasuda,
H. Chem. Rev. 2007, 107, 2365.
Scheme 2. The probable pathway of the formation of 1,3-oxazolidin-2-ones from
alkynes, amines, and CO2 catalyzed by copper (I) iodide.
amine and n-hexyl amine proceeded smoothly with 3ac and 3ad
obtained in yields of 86% and 73%, respectively (Table 2, entries 3
and 4). Cyclohexylamine and benzylamine gave the corresponding
products 3ae and 3af in yields of 87% and 69%, respectively
(Table 2, entries 5 and 6). Various terminal alkynes were treated
with n-butyl amine and our studying results indicated that alkyl
substituted aryl terminal alkynes could all go across the reaction
despite the alkyl groups in para-, meta-, or ortho-position of aryl
rings (Table 2, entries 7–10), the transformation could also tolerate
halogen groups (Table 2, entries 11 and 12). Substrate 1 h, bearing
a bulky substituent, could also undergo the cycloaddition (Table 2,
entry 13). Our experimental results indicated that substrate 1i,
bearing a strongly electron-withdrawing nitro group failed to
furnish the desired 1,3-oxazolidin-2-one and aliphatic alkyne that
appeared less reactive (Table 2, entries 14 and 15).
6. (a) Jiang, H. F.; Zhao, J. W. Tetrahedron Lett. 2009, 50, 60; (b) Jiang, H. F.; Zhao, J.
W.; Wang, A. Z. Synthesis 2008, 763.
7. (a) Qi, C. R.; Ye, J. W.; Zeng, W.; Jiang, H. F. Adv. Synth. Catal. 2010, 325, 1925; (b)
Jiang, H. F.; Ye, J. W.; Qi, C. R.; Huang, L. B. Tetrahedron Lett. 2010, 51, 928.
8. (a) Qi, C. R.; Jiang, H. F.; Wang, Z. Y.; Zou, B.; Yang, S. R. Synlett 2007, 255; (b) Qi,
C. R.; Jiang, H. F.; Wang, Z. Y.; Zou, B. Chin. J. Chem. 2007, 1051, 25; (c) Qi, C. R.;
Jiang, H. F.; Liu, H. L.; Yang, S. R.; Zou, B. Chem. J. Chin. Univ. 2007, 28, 1084.
9. Jiang, H. F.; Wang, A. Z.; Liu, H. L.; Qi, C. R. Eur. J. Org. Chem. 2008, 2309.
10. (a) Qi, C. R.; Jiang, H. F. Green Chem. 2007, 9, 1284; (b) Qi, C. R.; Huang, L. B.;
Jiang, H. F. Synthesis 2010, 1433.
11. (a) Yang, Z. Z.; Li, Y. N.; Wei, Y. Y.; He, L. N. Green Chem. 2011, 13, 2351; (b)
Fontana, F.; Chen, C. C.; Aggarwal, V. K. Org. Lett. 2011, 13, 3454; (c) Zhou, H.;
Wang, Y. M.; Zhang, W. Z.; Qu, J. P.; Lu, X. B. Green Chem. 2011, 13, 644.
12. (a) Maggi, R.; Bertolotti, C.; Orlandini, E.; Oro, C.; Sartori, G.; Selva, M.
Tetrahedron Lett. 2007, 48, 2131; (b) Kayaki, Y.; Yamamoto, M.; Suzuki, T.;
Ikariya, T. Green Chem. 2006, 8, 1019; (c) Feroci, M.; Orsini, M.; Sotgiu, G.; Rossi,
L.; Inesi, A. J. Org. Chem. 2005, 70, 7795; (d) Shi, M.; Shen, Y. M. J. Org. Chem.
2002, 67, 16.
The probable pathway of the cycloaddition of terminal alkynes,
primary amines, and CO2 is described in Scheme 2. Alkyne inter-
acted with amine via a copper-catalyzed tandem anti-markovnikov
hydroamination and alkyne addition to furnish propargylamine
which then went across the cycloadditon with CO2 to afford 5-ary-
lidene-1,3-oxazolidin-2-one.16,12
13. (a) Fournier, J.; Bruneau, C.; Dixneuf, P. H. Tetrahedron Lett. 1990, 31, 1721; (b)
Gu, Y. L.; Zhang, Q. H.; Duan, Z. Y.; Zhang, J.; Zhang, S. G.; Deng, Y. Q. J. Org.
Chem. 2005, 70, 7376; (c) Zhang, Q. H.; Shi, F.; Gu, Y. L.; Yang, J.; Deng, Y. Q.
Tetrahedron Lett. 2005, 46, 5907.
14. Jiang, H. F. Curr. Org. Chem. 2005, 9, 289.
15. Typical experimental procedure for the copper (I) catalyzed synthesis of 1, 3-
oxazolidin-2-ones from alkynes, amines, and carbon dioxide under solvent-free
conditions. A 15 mL polytetrafluoroethylene (PTFE) reaction vessel was charged
with CuI (0.1 mmol), alkyne (2 mmol), and amine (2 mmol). The vessel was
fixed into a stainless steel autoclave with a pressure-regulating system. The
autoclave was sealed and CO2 was introduced from a cylinder. The autoclave
was heated by an oil bath. The reaction continued under magnetic stirring for
24 h. When the reaction was complete, the vessel was cooled with an ice bath
and the pressure was released slowly to atmospheric pressure. The residue was
extracted with ethyl acetate (10 mL). The collected filtrate was concentrated
under reduced pressure. The product was purified by chromatography on a
silica gel column using light petroleum ether/ethyl acetate as eluent. (Z)-4-
Benzyl-5-benzylidene-3-butyloxazolidin-2-one (3aa) 1H NMR (400 MHz,
CDCl3) d 7.46 (d, J = 7.4 Hz, 2H), 7.44–7.13 (m, 8H), 5.19 (d, J = 1.5 Hz, 1H),
4.71–4.62 (m, 1H), 3.68–3.55 (m, 1H), 3.19–2.92 (m, 3H), 1.62–1.46 (m, 2H),
1.31 (m, 2H), 0.92 (t, J = 7.3 Hz, 1H). 13C NMR (101 MHz, CDCl3) d 155, 146, 135,
133, 130, 129, 128, 128, 127, 127, 104, 59, 42, 40, 29, 20, 14. IR (KBr): 2959,
1775, 1410. MS (EI, 70 eV): m/z (%) = 230 (100), 174 (35), 103 (10). HRMS Calcd
for C21H23NO2: 321.1729, Found: 321.1721. (Z)-4-Benzyl-5-benzylidene-3-sec-
butyloxazolidin-2-one (3ab) 1H NMR (400 MHz, CDCl3) d 7.46–7.16 (m, 10H),
4.83 (d, J = 3.8 Hz, 1H), 4.62 (td, J = 8.7, 4.0 Hz, 1H), 3.67–3.48 (m, 1H), 3.33 (m,
1H), 2.90 (m, 1H), 2.00–1.77 (m, 2H), 1.42 (dd, J = 16.8, 6.9 Hz, 3H), 0.98 (dd,
J = 17.1, 7.5 Hz, 3H). 13C NMR (101 MHz, CDCl3) d 155, 146, 135, 133, 130, 129,
128, 127, 104, 62, 53, 42, 28, 19, 11. MS (EI, 70 eV): m/z (%) = 230(72), 175(10),
174(100), 103(20). IR (KBr): 2978, 1780, 1420, 698. HRMS Calcd for C21H23NO2:
321.1729, Found: 321. 1725. (Z)-4-Benzyl-5-benzylidene-3-ethyloxazolidin-2-
one (3ac) 1H NMR (400 MHz, CDCl3) d 7.50 (d, J = 7.6 Hz, 2H), 7.33 (t, J = 7.2 Hz,
5H), 7.26–7.20 (m, 3H), 5.22 (s, 1H), 4.72 (t, J = 5.5 Hz, 1H), 3.71 (m, 1H), 3.22–
3.13 (m, 2H), 3.00 (dd, J = 14.0, 6.6 Hz, 1H), 1.22 (t, J = 7.2 Hz, 3H). 13C NMR
(101 MHz, CDCl3) d 155, 146, 135, 133, 130, 129, 128, 127. 104, 59, 40, 37, 13.
MS (EI, 70 eV): m/z (%) = 202(100), 174(9), 103(9), 91(11), 56(22). IR (KBr):
2970, 1775, 1376, 699. HRMS Calcd for C19H19NO2: 293.1416, Found: 293.
1427. (Z)-4-Benzyl-5-benzylidene-3-hexyloxazolidin-2-one (3ad) 1H NMR
(400 MHz, CDCl3) d 7.46 (d, J = 7.5 Hz, 2H), 7.32–7.25 (m, 5H), 7.22–7.14 (m,
3H), 5.19 (d, J = 1.1 Hz, 1H), 4.66 (t, J = 5.0 Hz, 1H), 3.64–3.55 (m, 1H), 3.17–2.94
In conclusion, we have disclosed that copper (I) iodide could
catalyze the chemical fixation of CO2 into 1,3-oxazolidin-2-ones
with alkynes and amines under solvent-free conditions. This proce-
dure supplies an alternative route to 1,3-oxazolidin-2-ones from
relatively low-cost alkynes and amines.
Acknowledgments
We thank the National Natural Science Foundation of China
(20932002 and 21172076), the National Basic Research Program
of China (973 Program) (2010CB-732206), the Doctoral Fund of
the Ministry of Education of China (20090172110014), the Guang-
dong Natural Science Foundation (10351064101000000), and the
Fundamental Research Funds for the Central Universities
(2011ZZ007) for financial support.
Supplementary data
Supplementary data associated with this article can be found,
References and notes
1. (a) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835; (b) Dyen, M. E.;
Swern, D. Chem. Rev. 1967, 67, 197.