7112
A. S. Achalkumar, C. V. Yelamaggad / Tetrahedron Letters 53 (2012) 7108–7112
3. (a) Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953–1010; (b) Ma, C. Q.;
Fonrodona, M.; Schikora, M. C.; Wienk, M. M.; Janssen, R. A. J.; Bauerle, P. Adv.
Funct. Mater. 2008, 18, 3323–3331; (c) Walker, B.; Tamayo, A. B.; Dang, X. D.;
Zalar, P.; Seo, J. H.; Garcia, A.; Tantiwiwat, M.; Nguyen, T. Q. Adv. Funct. Mater.
2009, 19, 3063–3069.
4. (a) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99–117; (b)
Sirringhaus, H. Adv. Mater. 2005, 17, 2411–2425; (c) Sun, Y.; Liu, Y.; Zhu, D. J.
Mater. Chem. 2005, 15, 53–65; (d) Murphy, A. R.; Frechet, J. M. J. Chem. Rev.
2007, 107, 1066–1096.
5. (a) Garnier, F.; Yassar, A.; Hajlaoui, R.; Horowitz, G.; Deloffre, F.; Servet, B.; Ries,
S.; Patrick, A. J. Am. Chem. Soc. 1993, 115, 8716–8721; (b) Balzani, V.; Credi, A.;
Raymo, F. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2000, 39, 3348–3391; (c)
Nguyen, T.-Q.; Martel, R.; Bushey, M.; Avouris, P.; Carlsen, A.; Nuckolls, C.; Brus,
L. Phys. Chem. Chem. Phys. 2007, 9, 1515–1532; (d) Rosen, B. M.; Wilson, C. J.;
Wilson, D. A.; Peterca, M.; Imam, M. R.; Percec, V. Chem. Rev. 2009, 109, 6275–
6540; (e) Mena-Osteritz, E.; Urdanpilleta, M.; El-Hosseiny, E.; Koslowski, B.;
Ziemann, P.; Bauerle, P. Beilstein J. Nanotechnol. 2011, 2, 802–808.
6. (a) Sergeyev, S.; Pisula, W.; Geerts, Y. H. Chem. Soc. Rev. 2007, 36, 1902–1929;
(b) Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hagele, C.; Scalia, G.;
Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M. Angew. Chem., Int.
Ed. 2007, 46, 4832–4837; (c) Pisula, W.; Zorn, M.; Chang, J. Y.; Mullen, K.;
Zentel, R. Macromol. Rapid Commun. 2009, 30, 1179–1202; (d) Kumar, S.
Chemistry of Discotic Liquid Crystals: From Monomers to Polymers; CRC Press:
Boca Raton, FL, 2010; (e) Kaafarani, B. R. Chem. Mater. 2011, 23, 378–396.
7. Chandasekhar, S.; Sadashiva, B. K.; Suresh, K. A. Pramana 1977, 9, 471–480.
8. (a) Li, Q. Self-Organized Organic Semiconductors: From Materials to Device
top panels of Figure 5a,b where the visually perceivable green light
in the emissive state can be seen. As shown in Table 2, the Stokes
shifts, the difference between positions of the band maxima of the
absorption and emission spectra, were found to be nearly over
60 nm. The lower panels of Figure 5a,b illustrate the absorption
spectra of the frozen Col phase (blue traces) and the photolumines-
cence spectra recorded at different temperatures while cooling the
Col phase from isotropic phase till RT. Analogous to the solution
spectra, the UV–Vis spectra of the frozen Col state at RT display
two absorption bands. Upon excitation with 440 nm light, both
the films, at RT, show a broad emission band at 629 nm with a neg-
ligible shoulder (see red traces of lower panels of Figure 5a,b). The
emission spectra of the fluid Col phase, recorded at four different
temperatures, exhibit, as shown in the right hand side of lower
panels of Fig. 5a,b, a broad emission band at around 630 nm. It
can be seen that the intensity of the emission peak increases pro-
gressively with the decrease in the temperature; this can be attrib-
uted to breaking of larger columnar stacks into smaller ones and
thermally activated radiationless processes.22
Apparently, the emission maxima of the neat/frozen Col phase,
when compared to the solution, exhibit a strong bathochromic
(red) shift that can be attributed to the strong co-facial proximity
of C3h and Cs isomers within the Col structure and perhaps the
presence of excimers/aggregates. Generally, the excimers are re-
garded as molecular dimers or a stoichiometric complex with asso-
ciated excited electronic states, dissociative ground states, and
structure-less emission spectra.23 In essence, the intimate overlap
of the discotic cores in the fluid columnar/glassy state brings the
energy levels closer and thus, a large red shift in the emission max-
ima occurs. Besides, to some extent, the thickness of the sample
also contributes to the shift in emission wavelength. Therefore,
for very thin (spin coated or vacuum deposited) samples there is
the possibility that emission might shift toward the blue region.
These results clearly illustrate the photoluminescence property of
the present discotics both in solution and mesomorphic state and
thus, further substantiate our view that discotic TSANs hold prom-
ise for diverse technological applications.
Applications; John Wiley
& Sons, 2011; (b) Xue, C.; Li, Q. Self-Organized
Semiconducting Discotic Liquid Crystals for Optoelectronic Applications. In
Liquid Crystals Beyond Display Applications; Li, Q., Ed.; John Wiley & Sons, 2012.
chapter 2.
9. Iino, H.; Takayashiki, Y.; Hanna, J.-I.; Bushby, R. J.; Haarer, D. Appl. Phys. Lett.
2005, 87, 192105/1-192105/3.
10. Tate, D. J.; Anemian, R.; Bushby, R. J.; Nanan, S.; Warriner, S. L.; Whitaker, B. J.
Beilstein J. Org. Chem. 2012, 8, 120–128.
11. (a) Christ, T.; Glusen, B.; Greiner, A.; Kettner, A.; Sander, R.; Stumpflen, V.;
Tsukruk, V.; Wendorff, J. H. Adv. Mater. 1997, 9, 48–52; (b) Seguy, I.; Jolinat, P.;
Destruel, P.; Farenc, J.; Mamy, R.; Bock, H.; Ip, J.; Nguyen, T. P. J. Appl. Phys.
2001, 89, 5442–5448; (c) Hassheider, T.; Benning, S. A.; Kitzerow, H.-S.; Achard,
M.-F.; Bock, H. Angew. Chem., Intl. Ed. 2001, 40, 2060–2063.
12. (a) Gregg, B. A.; Fox, M. A.; Bard, A. J. J. Phys. Chem. 1990, 94, 1586–1598; (b)
Sun, Q.; Dai, L.; Zhou, X.; Li, L.; Li, Q. Appl. Phys. Lett. 2007, 91, 253505/1-
253505/3.; (c) Li, L.; Kang, S.-W.; Harden, J.; Sun, Q.; Zhou, X.; Dai, L.; Jakli, A.;
Kumar, S.; Li, Q. Liq. Cryst. 2008, 35, 233–239.
13. (a) Cherian, S.; Donley, C.; Mathine, D.; LaRussa, L.; Xia, W.; Armstrong, N. J.
Appl. Phys. 2004, 96, 5638–5643; (b) Tatemichi, S.; Ichikawa, M.; Koyama, T.;
Taniguchi, Y. Appl. Phys. Lett. 2006, 89, 112108/1-112108/3.; (c) Schmidt, R.;
Oh, J. H.; Sun, Y.-S.; Deppisch, M.; Krause, A.-M.; Radacki, K.; Braunschweig, H.;
Koenemann, M.; Erk, P.; Bao, Z.; Wurthner, F. J. Am. Chem. Soc. 2009, 131, 6215–
6228.
In conclusion, the synthesis and characterization of new discot-
ic LCs derived from tris(N-salicylideneaniline)s are reported. The
novelty of these discotics stems from the fact that three stilbene
fluorophores, varying in the number and length of terminal chains,
are joined to an electron accepting central core. All six compounds,
occurring in two inseparable keto-enamine tautomeric forms fea-
turing C3h and Cs rotational symmetries, show Col LC behavior.
Their solutions and fluid/glassy Col phases exhibit photolumines-
cence. In view of the fact that these TSANs stabilize light emissive
Col phase, aided by the self-assembly of two tautomeric forms,
they can be regarded as technologically important organic
substances.
14. (a) Rohr, U.; Schlichting, P.; Bohm, A.; Gross, M.; Meerholz, K.; Brauchle, C.;
Mullen, K. Angew. Chem., Int. Ed. 1998, 37, 1434–1437; (b) Sautter, A.;
Thalacker, C.; Wurthner, F. Angew. Chem., Int. Ed. 2001, 40, 4425–4428; (c)
Seguy, I.; Destruel, P.; Bock, H. Synth. Met. 2000, 111(112), 15–18; (d)
Hassheider, T.; Benning, S.; Kitzerow, H.-S.; Achard, M.-F.; Bock, H. Angew.
Chem., Int. Ed. 2001, 40, 2060–2063; (e) Hayer, A.; de Halleux, V.; Kohler, A.; El-
Garoughy, A.; Meijer, E. W.; Barbera, J.; Tant, J.; Levin, J.; Lehmann, M.;
Gierschner, J.; Cornil, J.; Geerts, Y. H. J. Phys. Chem. B 2006, 110, 7653–7659.
15. Dambal, H. K.; Yelamaggad, C. V. Tetrahedron Lett. 2012, 53, 186–190.
16. (a) Yelamaggad, C. V.; Achalkumar, A. S.; Rao, D. S. S.; Prasad, S. K. J. Am. Chem.
Soc. 2004, 126, 6506–6507; (b) Yelamaggad, C. V.; Achalkumar, A. S.
Tetrahedron Lett. 2006, 47, 7071–7075; (c) Yelamaggad, C. V.; Achalkumar, A.
S.; Rao, D. S. S.; Prasad, S. K. J. Org. Chem. 2007, 72, 8308–8318.
17. Yelamaggad, C. V.; Achalkumar, A. S.; Rao, D. S. S.; Prasad, S. K. J. Org. Chem.
2009, 74, 3168–3171.
18. Yelamaggad, C. V.; Rashmi Prabhu, D. S. S.; Prasad, S. K. Tetrahedron Lett. 2010,
51, 4579–4583.
19. (a) Chong, J. H.; Sauer, M.; Patrick, B. O.; MacLachlan, M. J. Org. Lett. 2003, 5,
3823–3826; (b) Sauer, M.; Yeung, C.; Chong, J. H.; Patrick, B. O.; MacLachlan, M.
J. J. Org. Chem. 2006, 71, 775–788.
20. (a) Riddle, J. A.; Bollinger, J. C.; Lee, D. Angew. Chem., Int. Ed. 2005, 44, 6689–
6693; (b) Riddle, J. A.; Lathrop, S. P.; Bollinger, J. C.; Lee, D. J. Am. Chem. Soc.
2006, 128, 10986–10987; (c) Jiang, X.; Bollinger, J. C.; Lee, D. J. Am. Chem. Soc.
2006, 128, 11732–11733.
Acknowledgement
We gratefully acknowledge the financial support from the
Department of Science Technology, Govt. of India, provided under
the SERC scheme No. SR/S1//OC-06/2007.
21. (a) Meier, H. Angew. Chem., Int. Ed. Engl. 1992, 31, 1399–1420; (b) Vicinelli, V.;
Ceroni, P.; Maestri, M.; Lazzari, M.; Balzani, V.; Lee, S.-K.; van Heyst, J.; Vogtle,
F. Org. Biomol. Chem. 2004, 2, 2207–2213; (c) Kleppinger, R.; Lillya, C. P.; Yang,
C. J. Am. Chem. Soc. 1997, 119, 4097–4102; (d) Festag, R.; Kleppinger, R.;
Soliman, M.; Wendorff, J. H.; Lattermann, G.; Staufer, G. Liq. Cryst. 1992, 11,
699–710.
22. (a) Kleppinger, R.; Lillya, C. P.; Yang, C. J. Am. Chem. Soc. 1997, 119, 4097–4102;
(b) Festag, R.; Kleppinger, R.; Soliman, M.; Wendorff, J. H.; Lattermann, G.;
Staufer, G. Liq. Cryst. 1992, 11, 699–710.
References and notes
1. (a) Klauk, H. Organic Electronics: Materials, Manufacturing and Applications;
Wiley-VCH, 2006; (b) Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Chem. Rev. 2009, 109,
5868–5923; (c) Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes,
A. B. Chem. Rev. 2009, 109, 897–1091; (d) Yan, H.; Chen, Z. H.; Zheng, Y.;
Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457,
679–686; (e) Wu, W.; Liu, Y.; Zhu, D. Chem. Soc. Rev. 2010, 39, 1489–1502.
2. (a) Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913–915; (b) Lo, S.-C.;
Burn, P. L. Chem. Rev. 2007, 107, 1097–1116; (c) Chamorr-Posada, P.; Martin-
Ramos, P.; Vavas-Gracia, L. M. Fundamentals of OLED Technology; University of
Valladolid: Spain, 2008.
23. (a) Birks, J. B. The Photophysics of Aromatic Excimers. In The Exiplex; Gordon,
M., Ware, W. R., Eds.; Academic Press: New York, 1975; p 39; (b) Duan, X.-F.;
Wang, J.-L.; Pei, J. Org. Lett. 2005, 19, 4071.