6986
H. J. Lee, D. Y. Kim / Tetrahedron Letters 53 (2012) 6984–6986
Chem., Int. Ed. 2010, 49, 7332; (c) Dobish, M. C.; Johnston, J. N. J. Am. Chem. Soc.
Although, the reason for the observed enantioselectivity is still
2012, 134, 6068.
unclear, we believe that 4-pentenoic acids 2 and TBCO are acti-
vated by the palladium catalyst 1. Alkene of 4-pentenoic acids at-
tacks electrophilic brominating reagent as shown in Figure 2. Then,
carboxylate attacks the cyclic bromonium ion to afford the bromol-
actonization product (Fig. 2). Investigations to obtain the clear
mechanistic feature are still in progress.
In summary, we have accomplished the efficient catalytic enan-
tioselective bromolactonization of 4-aryl 4-pentenoic acids with
TBCO in the presence of dicationic palladium complex as a chiral
catalyst. The air- and moisture-stable palladium catalyst 1c is
highly effective to give high yields and moderate to excellent
enantioselectivities (up to 97% ee) under mild reaction conditions.
Further study of palladium-catalyzed enantioselective bromolact-
onization of various alkenoic acid derivatives is in progress.
6. (a) Zhou, L.; Tan, C. K.; Jiang, X.; Chen, F.; Yeung, Y. J. Am. Chem. Soc. 2010, 132,
15474; (b) Whitehead, D. C.; Fhaner, M.; Borhan, B. Tetrahedron Lett. 2011, 52,
2288; (c) Jiang, X.; Tan, C. K.; Zhou, L.; Yeung, Y. Angew. Chem., Int. Ed. 2012, 51,
7771; (d) Paull, D. H.; Fang, C.; Donald, J. R.; Pansick, A. D.; Martin, S. F. J. Am.
Chem. Soc. 2012, 134, 11128.
7. For recent selected reviews for the enantioselective reactions catalyzed by
chiral palladium complexes, see: (a) Smith, A. M. R.; Hii, K. K. Chem. Rev. 2011,
111, 1637; (b) Lectard, S.; Hamashima, Y.; Sodeoka, M. Adv. Synth. Catal. 2010,
352, 2708; (c) Sodeoka, M.; Hamashima, Y. Chem. Commun. 2009, 5787.
8. (a) Kim, D. Y.; Huh, S. C. Tetrahedron Lett. 2001, 57, 8933; (b) Kim, D. Y.; Huh, S.
C.; Kim, M. H. Tetrahedron Lett. 2001, 42, 6299; (c) Kim, D. Y.; Park, E. J. Org. Lett.
2002, 4, 545; (d) Park, E. J.; Kim, M. H.; Kim, D. Y. J. Org. Chem. 2004, 69, 6897;
(e) Kim, S. M.; Lee, J. H.; Kim, D. Y. Synlett 2008, 2659; (f) Jung, S. H.; Kim, D. Y.
Tetrahedron Lett. 2008, 49, 5527; (g) Kang, Y. K.; Kim, D. Y. J. Org. Chem. 2009, 74,
5734; (h) Kwon, B. K.; Kim, S. M.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 759; Oh,
Y. Y.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4674; (j) Lee, J. H.; Kim, D.
Y. Adv. Synth. Catal. 2009, 351, 1779; (k) Moon, H. W.; Cho, M. J.; Kim, D. Y.
Tetrahedron Lett. 2009, 50, 4896; (l) Mang, J. Y.; Kwon, D. G.; Kim, D. Y. J.
Fluorine Chem. 2009, 130, 259; (m) Kang, Y. K.; Kim, D. Y. Curr. Org. Chem. 2010,
14, 917; (n) Lee, J. H.; Kim, D. Y. Synthesis 2010, 1860–1864; (o) Kang, Y. K.; Kim,
S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847; (p) Moon, H. W.; Kim, D. Y.
Tetrahedron Lett. 2010, 51, 2906; (q) Kang, S. H.; Kim, D. Y. Adv. Synth. Catal.
2010, 352, 2783; (r) Lee, H. J.; Kang, S. H.; Kim, D. Y. Synlett 2011, 1559; (s)
Kang, Y. K.; Yoon, S. J.; Kim, D. Y. Bull. Korean Chem. Soc. 2011, 32, 1195; (t)
Yoon, S. J.; Kang, Y. K.; Kim, D. Y. Synlett 2011, 420; (u) Lee, H. J.; Woo, S. B.; Kim,
D. Y. Tetrahedron Lett. 2012, 53, 3373; (v) Lee, H. J.; Woo, S. B.; Kim, D. Y.
Molecules 2012, 17, 7523; (w) Woo, S. B.; Kim, D. Y. Beilstein J. Org. Chem. 2012,
8, 699; (x) Lee, H. J.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 3437; (y)
Moon, H. W.; Kim, D. Y. Bull. Korean Chem. Soc. 2012, 33, 2845.
Acknowledgment
This research was supported by the Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology
(2012-0008310).
References and notes
9. For recent selected examples of the enantioselective reactions catalyzed by
chiral palladium complexes in our laboratory, see: (a) Kim, S. M.; Kim, H. R.;
Kim, D. Y. Org. Lett. 2005, 7, 2309; (b) Kim, H. R.; Kim, D. Y. Tetrahedron Lett.
2005, 46, 3115; (c) Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2006, 47, 4565; (d)
Kang, Y. K.; Cho, M. J.; Kim, S. M.; Kim, D. Y. Synlett 2007, 1135; (e) Kang, Y. K.;
Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2093; (f) Lee, J. H.; Bang, H. T.; Kim,
D. Y. Synlett 2008, 1821; Kang, S. H.; Kang, Y. K.; Kim, D. Y. Tetrahedron Lett.
2009, 65, 5676; (h) Kang, S. H.; Kwon, B. K.; Kim, D. Y. Tetrahedron Lett. 2011, 52,
3247; (i) Kang, Y. K.; Suh, K. H.; Kim, D. Y. Synlett 2011, 1125; (j) Kang, Y. K.;
Kim, D. Y. Tetrahedron Lett. 2011, 52, 2356; (k) Kwon, B. K.; Mang, J. Y.; Kim, D.
Y. Bull. Korean Chem. Soc. 2012, 33, 2481; Kang, Y. K.; Kim, H. H.; Koh, K. O.; Kim,
D. Y. Tetrahedron Lett. 2012, 53, 3811; (m) Lee, H. J.; Kim, D. Y. Synlett 2012,
1629.
1. (a) Jayaraman, N. Tetrahedron Lett. 2004, 60, 5273; (b) Lava, M. S.; Banerjee, A.
K.; Cabrera, E. V. Curr. Org. Chem. 2009, 13, 720; (c) Rodriguez, F.; Fananas, F. J.
In Handbook of Cyclization Reactions; Ma, S., Ed.; Wiley-VCH: New York, 2010;
Vol. 4, pp 951–990.
2. For reviews of enantioselective halocyclizations, see: (a) Chen, G.; Ma, S. Angew.
Chem., Int. Ed. 2010, 49, 8306; (b) Tan, C. K.; Zhou, L.; Yeung, Y. Synlett 2011,
1335; (c) Snyder, S. A.; Treitler, D. S.; Brucks, A. P. Aldrichim. Acta 2011, 44, 27;
(d) Castellanos, A.; Fletcher, S. P. Chem. Eur. J. 2011, 17, 5766.
3. For recent examples of enantioselective chlorolactonizations, see: (a)
Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B. J. Am. Chem. Soc.
2010, 132, 3298; (b) Yousefi, R.; Whitehead, D. C.; Mueller, J. M.; Staples, R. J.;
Borhan, B. Org. Lett. 2011, 13, 608; (c) Jaganathan, A.; Garzan, A.; Whitehead, D.
C.; Staples, R. J.; Borhan, B. Angew. Chem., Int. Ed. 2011, 50, 2593; (d) Zhang, W.;
Liu, N.; Schienebeck, C. M.; Decloux, K.; Zheng, S.; Werness, J. B.; Tang, W. Chem.
Eur. J. 2012, 18, 7296.
4. For recent examples of enantioselective bromolactonizations, see: (a) Murai, K.;
Matsushita, T.; Nakamura, A.; Fukushima, S.; Shimura, M.; Fujioka, H. Angew.
Chem., Int. Ed. 2010, 49, 9174; (b) Zhang, W.; Zheng, S.; Liu, N.; Werness, J. B.;
Guzei, I. A.; Tang, W. J. Am. Chem. Soc. 2010, 132, 3664; (c) Chen, J.; Kiat, Z. C.;
Yeung, Y.-Y. J. Org. Chem. 2011, 77, 999; (d) Tan, C. K.; Zhou, L.; Yeung, Y. Org.
Lett. 2011, 13, 2738; (e) Tan, C. T.; Le, C.; Yeung, Y. Chem. Commun. 2012, 48,
5793; (f) Li, G.-x.; Fu, Q.-q.; Zhang, X.-m.; Tang, Z. Tetrahedron: Asymmetry
2012, 23, 245; (g) Murai, K.; Nakamura, A.; Matsushita, T.; Shimura, M.; Fujioka,
H. Chem. Eur. J. 2012, 18, 8448.
10. Typical procedure for the bromolactonization of 4-phenyl 4-pentenoic acid (2a)
with TBCO: To a stirred solution of TBCO (90.1 mg, 0.22 mmol) and catalyst 1c
(25.2 mg, 0.02 mmol) in trifluoroethanol (2 mL) was added 4-phenyl 4-
pentenoic acid (2a, 35.2 mg, 0.2 mmol) at room temperature. The reaction
mixture was stirred for 2 h at room temperature. After completion of the
reaction, the resulting solution was concentrated in vacuo and the obtained
residue was purified by flash chromatography (EtOAc/hexane, 1:3) to afford
the 50 mg (98%) of the bromolactonization product 3a. (R)-5-(bromomethyl)-
dihydro-5-phenylfuran-2(3H)-one (3a): ½a D23
ꢁ
= +27.9 (c = 1.00, CHCl3); 1H NMR
d 7.41–7.34 (m, 5H), 3.74 (d, J = 11.4 Hz, 1H), 3.69 (d,
(400 MHz, CDCl3)
J = 11.4 Hz, 1H), 2.84–2.76 (m, 2H), 2.60–2.49 (m, 2H); 13C NMR (100 MHz,
CDCl3) d 175.4, 140.6, 128.7, 128.5, 124.8, 86.3, 40.9, 32.3, 28.9); HPLC (85:15,
n-hexane:i-PrOH, 214 nm, 0.6 mL/min) Chiralpack IC column, tR = 25.4 min
(major), tR = 30.2 min (minor), 75% ee.
5. For recent examples of enantioselective iodolactonizations, see: (a) Ning, Z.; Jin,
R.; Ding, J.; Gao, L. Synlett 2009, 2291; (b) Veitch, G. E.; Jacobsen, E. N. Angew.