ChemComm
Communication
This activity is supported by BRNS (2011/20/37C/13/BRNS),
India. Financial support received from UGC-India (fellowship
to T.P.) and IIT Bombay (fellowship to S.A. and Akanksha)
is gratefully acknowledged. X-ray structural study was carried
out at the National Single Crystal Diffractometer Facility, IIT
Bombay.
Notes and references
1 (a) Metal-Catalyzed Cross-Coupling Reactions, ed. A. de Meijere and
F. Diederich, Wiley-VCH, Weinheim, Germany, 2nd edn, 2004;
(b) J. F. Hartwig, Organotransition Metal Chemistry: From Bonding to
Catalysis, University Science Books, Sausalito, CA; (c) J. March,
Advanced Organic Chemistry, John Wiley
& Sons, New York,
3rd edn, 1985; (d) T. Patra, S. Manna and D. Maiti, Angew. Chem.,
Int. Ed., 2011, 50, 12140–12142.
Scheme 3 Synthetic applicability.
2 (a) N. Barbero and R. Martin, Org. Lett., 2012, 14, 796–799;
(b) A. G. Sergeev and J. F. Hartwig, Science, 2011, 332, 439–443;
(c) P. Alvarez-Bercedo and R. Martin, J. Am. Chem. Soc., 2010, 132,
17352–17353; (d) W. Hartwig, Tetrahedron, 1983, 39, 2609–2645;
(e) N. Chatani, H. Tatamidani, Y. Ie, F. Kakiuchi and S. Murai,
J. Am. Chem. Soc., 2001, 123, 4849–4850; ( f ) T. C. Fessard,
H. Motoyoshi and E. M. Carreira, Angew. Chem., Int. Ed., 2007, 46,
2078–2081; (g) J. Tsuji and T. Ohno, Synthesis, 1969, 157–169;
(h) C. R. Hauser and B. E. Hudson, Jr., Org. React., 1942, 1, 266;
(i) A. Modak, A. Deb, T. Patra, S. Rana, S. Maity and D. Maiti, Chem.
Commun., 2012, 48, 4253–4255; ( j) Akanksha and D. Maiti, Green
Chem., 2012, 14, 2314–2320.
3 (a) M. Tobisu, R. Nakamura, Y. Kita and N. Chatani, J. Am. Chem.
Soc., 2009, 131, 3174; (b) M. Tobisu, R. Nakamura, Y. Kita and
N. Chatani, Bull. Korean Chem. Soc., 2010, 31, 582–587;
(c) H. Nakazawa, K. Kamata and M. Itazaki, Chem. Commun., 2005,
4004–4006; (d) H. Nakazawa, M. Itazaki, K. Kamata and K. Ueda,
Chem.–Asian J., 2007, 2, 882–888; (e) K. Fukurnoto, T. Oya, M. Itazaki
and H. Nakazawa, J. Am. Chem. Soc., 2009, 131, 38–39; ( f ) M. Tobisu,
Y. Kita and N. Chatani, J. Am. Chem. Soc., 2006, 128, 8152–8153;
(g) K. Fukumoto, A. A. Dahy, T. Oya, K. Hayasaka, M. Itazaki,
N. Koga and H. Nakazawa, Organometallics, 2012, 31, 787–790;
(h) M. Tobisu, Y. Kita, Y. Ano and N. Chatani, J. Am. Chem. Soc.,
2008, 130, 15982–15989.
quick formation of this nickel complex, trans-[Ni(PCy3)2(CN)2], is
possibly contributing to catalyst deactivation.
We next set out to determine the realtive ease of nickel
catalyzed defunctionalization reactions with aryl–CN, –SMe,
–OMe and –OAr functional groups under the present reaction
conditions (Table 4). We have carried out competition experi-
ments with 2-cyanonaphthalene and 2-X-naphthalene (X =
OMe, OAr and SMe) where two substrates were reacted in one
flask. We observed that reduction of the aromatic C–CN bond
occurs faster than ArOAr and ArOMe. Further investigations
showed that removal of –SMe is faster than that of the
–CN group.2a Thus our present study along with the recent
literature2a–c,7 enabled us to find a reactivity pattern which is
summarized below:
4 J. Y. Corey, Chem. Rev., 2011, 111, 863–1071.
5 (a) J. M. Mattalia, C. Marchi-Delapierre, H. Hazimeh and
M. Chanon, ARKIVOC, 2006, 90–118; (b) T. A. Atesin, T. Li,
S. Lachaize, W. W. Brennessel, J. J. Garcia and W. D. Jones, J. Am.
Chem. Soc., 2007, 129, 7562–7569.
The decyanation reaction proved to be scalable, with
2-(1H-pyrrol-1-yl)benzonitrile producing 96% isolated yield of
the expected product (Scheme 3, 2d). Benzyl cyanide can be
alkylated upon NaH treatment. Subsequent decyanation of the
resulting product will therefore allow use of benzyl cyanide as a
benzyl anion equivalent (Scheme 3, 4a). A cyano group is also
ortho directing10 and therefore direct C–H arylation at the ortho-
position and successive decyanation would allow efficient
synthesis of biaryls (Scheme 3, 1k). These two-step methods
(Scheme 3) demonstrate the power of this decyanation strategy
to synthesize useful molecules.
In summary, we have developed a general protocol for
nickel-mediated decyanation of aryl and alkyl cyanides. A wide
range of nitriles with varying electronic and steric substituents
were successfully decyanated as well as the substrates with
b-hydrogen. Synthetic advantages of the cyano group including
ortho-directing ability, a-C–H acidity and electron-withdrawing
ability can thus temporarily be used. The Ni-catalyzed decyana-
tion reaction is expected to be applicable in synthetic chemistry
due to its wide availability and easy to handle protocol. Studies
are ongoing in our research group to develop related synthetic
transformations and to elucidate mechanistic details for the
reductive decyanation of the C–CN bond.
6 (a) Y. Nakao and T. Hiyama, Pure Appl. Chem., 2008, 80, 1097–1107;
(b) M. Tobisu and N. Chatani, Chem. Soc. Rev., 2008, 37, 300–307;
(c) J. J. Garcia, N. M. Brunkan and W. D. Jones, J. Am. Chem. Soc.,
2002, 124, 9547–9555; (d) Y. Nakao, A. Yada, S. Ebata and T. Hiyama,
J. Am. Chem. Soc., 2007, 129, 2428–2429; (e) J. A. Miller and
J. W. Dankwardt, Tetrahedron Lett., 2003, 44, 1907–1910;
( f ) Y. Hirata, A. Yada, E. Morita, Y. Nakao, T. Hiyama, M. Ohashi
and S. Ogoshi, J. Am. Chem. Soc., 2010, 132, 10070–10077;
(g) Y. Hirata, T. Yukawa, N. Kashihara, Y. Nakao and T. Hiyama,
J. Am. Chem. Soc., 2009, 131, 10964–10973; (h) Y. Nakao, A. Yada and
T. Hiyama, J. Am. Chem. Soc., 2010, 132, 10024–10026; (i) A. Yada,
T. Yukawa, Y. Nakao and T. Hiyama, Chem. Commun., 2009,
3931–3933; ( j) N. M. Brunkan, D. M. Brestensky and W. D. Jones,
J. Am. Chem. Soc., 2004, 126, 3627–3641; (k) Y. Nakao, S. Ebata,
A. Yada, T. Hiyama, M. Ikawa and S. Ogoshi, J. Am. Chem. Soc., 2008,
130, 12874–12875; (l) M. P. Watson and E. N. Jacobsen, J. Am. Chem.
Soc., 2008, 130, 12594–12595.
7 M. Tobisu, K. Yamakawa, T. Shimasaki and N. Chatani, Chem.
Commun., 2011, 47, 2946–2948.
8 (a) X. L. Hu, Chem. Sci., 2011, 2, 1867–1886; (b) A. C. Frisch and
M. Beller, Angew. Chem., Int. Ed., 2005, 44, 674–688; (c) A. Rudolph
and M. Lautens, Angew. Chem., Int. Ed., 2009, 48, 2656–2670.
9 (a) B. H. Xia, C. M. Che, D. L. Phillips, K. H. Leung and K. K. Cheung,
Inorg. Chem., 2002, 41, 3866–3875; (b) T. Schaub, C. Doring and
U. Radius, Dalton Trans., 2007, 1993–2002.
10 W. Li, Z. P. Xu, P. P. Sun, X. Q. Jiang and M. Fang, Org. Lett., 2011,
13, 1286–1289.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 69--71 71