easily available starting materials. High regioselectivity has
been achieved when coupled with electron-neutral or electron-
poor aryl boronic acids. Further studies to elucidate the
precise mechanism and to extend the scope of synthetic utility
are in progress in our laboratory.
We thank the National Natural Science Foundation of
China (Grant No. 21121062, 21125210), Chinese Academy
of Science, and the Major State Basic Research Development
Program (Grant No. 2011CB808700) for financial support.
Scheme 3 One-pot synthesis of pentacenes.
Notes and references
1 For reviews, see: (a) M. Bendikov, F. Wudl and D. F. Perepichka,
Chem. Rev., 2004, 104, 4891; (b) J. E. Anthony, Chem. Rev., 2006,
106, 5028.
2 For review, see: H. Qu and C. Chi, Curr. Org. Chem., 2010,
14, 2070.
3 For examples, see: (a) M. S. Taylor and T. M. Swager, Angew.
Chem., Int. Ed., 2007, 46, 8480; (b) J. E. Anthony, J. S. Brooks,
D. L. Eaton and S. R. Parkin, J. Am. Chem. Soc., 2001, 123, 9482.
4 (a) T. Takahashi, M. Kitamura, B. Shen and K. Nakajima, J. Am.
Chem. Soc., 2000, 122, 12876; (b) T. Takahashi, K. Kashima, S. Li,
K. Nakajima and K. Kanno, J. Am. Chem. Soc., 2007, 129, 15752.
5 D. M. Bowles and J. E. Anthony, Org. Lett., 2000, 2, 85.
6 C.-H. Lin, K.-H. Lin, B. Pal and L.-D. Tsou, Chem. Commun.,
2009, 803.
7 (a) Z. Chen, P. Muller and T. M. Swager, Org. Lett., 2006, 8, 273;
(b) Y. Kuninobu, T. Seiki, S. Kanamaru, Y. Nishina and K. Takai,
Org. Lett., 2010, 12, 5287; (c) M. M. Payne, S. A. Odom,
S. R. Parkin and J. E. Anthony, Org. Lett., 2004, 6, 3325.
8 (a) H. A. Staab and B. Draeger, Chem. Ber., 1972, 105, 2320;
(b) F. Toda, K. Tanaka, I. Sano and T. Isozaki, Angew. Chem., Int.
Ed., 1994, 33, 1757; (c) K. Tanaka, N. Takamoto, Y. Tezuka,
M. Kato and F. Toda, Tetrahedron, 2001, 57, 3761; (d) S. Kitagaki,
K. Katoh, K. Ohdachi, Y. Takahashi, D. Shibata and C. Mukai,
J. Org. Chem., 2006, 71, 6908; (e) S. Kitagaki, K. Ohdachi,
K. Katoh and C. Mukai, Org. Lett., 2006, 8, 95; (f) S. Kitagaki,
Y. Okumura and C. Mukai, Tetrahedron, 2006, 62, 10311.
9 Y.-C. Lin and C.-H. Lin, Org. Lett., 2007, 9, 2075.
10 Y. Chen, M. Chen and Y. Liu, Angew. Chem., Int. Ed., 2012,
51, 6493.
11 G. Li, S. Zhou, G. Su, Y. Liu and P. G. Wang, J. Org. Chem.,
2007, 72, 9830.
12 C. Kitamura, A. Takenaka, T. Kawase, T. Kobayashi and
H. Naito, Chem. Commun., 2011, 47, 6653.
13 (a) T. Moriya, N. Miyaura and A. Suzuki, Synlett, 1994, 149;
(b) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457;
(c) W. Shu, G. Jia and S. Ma, Org. Lett., 2009, 11, 117; For the
trapping of the in situ formed CO2, see: (d) J. Ye, S. Li and S. Ma,
Org. Lett., 2012, 14, 2312.
14 (a) Z. Zhang, X. Lu, Z. Xu, Q. Zhang and X. Han, Organometallics,
2001, 20, 3724; (b) G. Zhu and X. Lu, Organometallics, 1995,
14, 4899; (c) L. Zhou, Y. Liu, Y. Zhang and J. Wang, Chem.
Commun., 2011, 47, 3622.
Scheme 4 Possible reaction mechanism.
2t–2v in 50–74% yields (entries 4–6). These tetracenes are
highly soluble in common organic solvents. The structure of
tetracene was unambiguously determined by X-ray crystallo-
graphic analysis of compounds 2b and 2u.
The present cascade cyclization methodology has been success-
fully extended to the synthesis of pentacenes (Scheme 3). Aryl and
alkylboronic acids were well accommodated, leading to pentacenes
4a–4c in moderate to good yields as purple solids. The method
presented here represents one of the most efficient routes for the
synthesis of pentacenes from acyclic precursors.
We tentatively propose the following plausible mechanism
for this transformation (Scheme 4). The reaction is initiated by
double SN20 attack of Pd(0) on the propargylic carbonate13 to form
bis[(s-allenyl)palladium(II)] intermediate 5.15 6p-electrocyclic ring-
closure of ene-diallene8 5 leads to 2,3-naphthoquinodimethane 6 as
the reactive alkene isomer, which can also be represented as the
resonance structure 7, a highly stabilized biradical.16 A disrotatory
6p-electrocyclization of 6 occurs to afford the intermediate 8, in
which the palladium and the hydrogen are in the cis configuration.
b-Hydride elimination furnishes arylpalladium intermediate 9.17
Suzuki-type coupling of intermediate 9 with organoboronic acid
gives the tetracene 2 and releases Pd(0). The formation of tetracene
regioisomers 2q and 2q0 might be due to the competitive coupling
reactions of intermediate 5 or 6/7 with arylboronic acid.
15 For Pd(0)/SmI2 mediated formation of diallenes from o-bis-
(a-acetoxypropargyl)benzene possibly via the bis[(s-allenyl)palla-
dium(II)] intermediate, see: Y. Sugimoto, T. Hanamoto and
J. Inanaga, Appl. Organomet. Chem., 1995, 9, 369.
16 J. L. Segura and N. Martın, Chem. Rev., 1999, 99, 3199.
´
17 The reaction of 1a in the absence of aryl boronic acids (5 mol%
Pd(PPh3)4, 100 1C, in THF, 3 h) afforded 5-phenyltetracene in 21%
yield. This result may support the formation of intermediate 9.
In summary, we have developed a novel Pd(0)-catalyzed
cascade reaction for the synthesis of linear polyacenes from
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 12189–12191 12191