6792
S. Sarkar et al. / Tetrahedron Letters 53 (2012) 6789–6792
2. (a) Anastas, P.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford
University Press: Oxford, 1998; (b) Polshettiwar, V.; Varma, R. S. J. Org. Chem.
2007, 72, 7420.
3. Dwars, T.; Paetzold, E.; Oehme, G. Angew. Chem., Int. Ed. 2005, 44, 7174.
4. Fendler, J. H.; Fendler, E. J. Catalysis in Micellar and Macromolecular Systems;
Academic Press: New York, 1975.
5. Tanenbaum, S. W. In Frontiers of Biology; Tanenbaum, S. W., Ed.; North Holland
Publishing Co: New York, 1980; Vol. 46,.
6. Ferland, J. M.; Demerson, C. A.; Humber, L. G. Can. J. Chem. 1985, 63, 361.
7. Clercq, E. D. J. Med. Chem. 1995, 38, 2491.
of product 5b (see Supplementary data) confirmed the stereo-
chemistry and structure simultaneously.
It is notable that, when the aryl substituent on the nitrogen
atom of the benzamide moiety is replaced by hydrogen atom, that
is for 2-iodobenzamide, only Sonogashira product is formed. How-
ever, the presence of aryl substituent on the terminal alkyne,
which was found to be the essential requirement for one-pot syn-
thesis of isoindolinones from corresponding 2-iodobenzamides
and terminal alkynes via Pd-mediated synthesis,25b is no longer
mandatory in our case (Table 3, entry 10–11). Another major
advantage of the protocol is that no dimerized product, which nor-
mally occurs during heteroannulation reaction and leads to the re-
duced reaction yield of the product, was observed in our case.
Moreover, the corresponding bromides 3c, which are less prone
to participate in such a reaction, are found to be equally good in
our reaction condition (Table 3, entry 3).
8. Taylor, E. C.; Zhou, P.; Jenning, L. D.; Mao, Z.; Hu, B.; Jun, J. G. Tetrahedron Lett.
1997, 38, 521.
9. Li, S.; Wang, X.; Guo, H.; Chen, L. Yiyano Gongye 1985, 16, 543.
10. Blasko, G.; Guha, D. J.; Shamma, M. J. Nat. Prod. 1982, 45, 105.
11. (a) Weinstock, J.; Hieble, J. P.; Wilson, J. W. Drugs Future 1985, 10, 645; (b)
Cordell, G. A. In The Alkaloids: Chemistry and Pharmacology; Academic: San
Diego, 1998; Vol. 50,
12. (a) Achinami, K.; Ashizawa, N.; Kobayashi, F. Jpn Patent JP 03 1991, 133, 955; (b)
Chem. Abstr. 1991, 115, 255977.
13. Valencia, E.; Fajardo, V.; Firdous, S.; Freyer, A. J.; Shamma, M. Tetrahedron Lett.
1985, 26, 993.
14. Wada, T.; Fukuda, N. Psychopharmacology 1991, 103, 314.
15. Kavoussi, R. J.; Pande, A. C.; Lydiard, R. B.; Pap, L.; Pigott, T. A.; Rickels, K. Int. J.
Neuropsychopharmacol. 2000, 3. Abst. P. 09.042.
16. Chang, Z.-L.; Zhu, D.-Y. In The Alkaloids; Brossi, A., Ed.; Academic Press: New
York, 1978; Vol. 31, p 29.
It is interesting to note that with o-iodo benzamide 3a and tri-
methylsilyl acetylene (6) under the above condition, the reaction
yielded the desired cyclized product 7.25b But when tetra-butylam-
monium fluoride (50 mol %) was added to the system dimer 1134
was formed as the sole product (Scheme 2).
17. Gabriel, S. Ber 1985, 18, 3470.
18. Ang, W. S.; Halton, B. B. Aust. J. Chem. 1971, 24, 851.
A plausible mechanism for the formation of 11 in cationic sur-
factant medium is also envisaged. It is presumed that in aqueous
micellar medium 3a and trimethylsilyl acetylene 6 are in very close
proximity leading to the formation of 2-(trimethylsilyl)ethynyl
benzamide 8 by Sonogashira reaction as predicted. Now fluoride
ion (from tetra-butylammonium fluoride) being negatively charged
lies in the immediate vicinity of the cationic surfactant, and acts as
a desilylating agent to give intermediate 9. The intermediate
immediately undergoes a consecutive Sonogashira reaction to give
the dimer 10, which undergoes an easy cyclization in the presence
of Pd-catalyst to afford dimer 11.
In summary, we have demonstrated an efficient, economical,
environmentally benign, and rapid process for the synthesis of
(Z)-3-methyleneisoindoline-1-one scaffold35,36 in aqueous micellar
medium. We found that, 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadi-
ene was useful as phosphine-free ligand for this reaction. The green
reaction condition, complete regio- and stereo-selectivity, and
excellent yields of products, made this protocol a convenient one
for the preparation of (Z)-3-methyleneisoindoline-1-ones.
19. Couture, A.; Deniau, E.; Grandclaudon, P. Tetrahedron 1997, 53, 10313.
20. Gutierrez, A. J.; Shea, K. J.; Svoboda, J. J. J. Org. Chem. 1989, 54, 4335.
21. (a) Mali, R. S.; Yeola, S. Synthesis 1986, 755; (b) Epsztajn, J.; Grzelak, R.; Jozwiak,
A. Synthesis 1996, 1212.
22. (a) Weidner-Wells, M. A.; Oda, K.; Mazzochi, P. H. Tetrahedron 1997, 53, 3475;
(b) Griesbeck, A. G.; Hirt, J.; Kramer, W.; Dallakian, P. Tetrahedron 1998, 54,
3169.
23. Milewska, M. J.; Bytner, T.; Polonski, T. Synthesis 1996, 1485.
24. (a) Yamamoto, I.; Tabo, Y.; Gotoh, H. Tetrahedron Lett. 1971, 12, 2295; (b)
Dominh, T.; Johnson, A. L.; Jones, J. E.; Senise, P. P., Jr. J. Org. Chem. 1977, 42,
4217; (c) Nefkens, G. H. L.; Zwanenburg, B. Tetrahedron 1985, 41, 6063; (d)
Rowe, F. M.; McFadyen, W. T.; Peters, A. T. J. Chem. Soc. 1947, 468; (e) Takeuchi;
Eguchi, S. J. Chem. Soc., Perkin Trans. 1 1989, 2149.
25. (a) Hellal, M.; Cuny, G. D. Tetrahedron Lett. 2011, 52, 5508; (b) Kundu, N. G.;
Khan, M. W. Tetrahedron 2000, 56, 4777; (c) Wilkinson, G.; Stone, F. G. A.; Abel,
E. W. In Comprehensive Organometallic Chemistry; Pergamon: Oxford, 1982; Vol.
1, 1st ed.; (d) Kundu, N. G.; Khan, M. W.; Mukhopadhyay, R. Tetrahedron 1999,
55, 12361; (e) Khan, M. W.; Kundu, N. G. Synlett. 1997, 1435.
26. (a) Glaser, C. Ber. Dtsch. Chem. Ges. 1869, 2, 422; (b) Siemsen, P.; Livingston, R.
C.; Diederich, F. Angew. Chem., Int. Ed. 2000, 39, 2632.
27. (a) Yi, C. Y.; Hua, R. M. J. Org. Chem. 2006, 71, 2535; (b) Soheili, A.; Albaneze-
Walker, J.; Murry, J. A.; Dormer, P. G.; Hughes, D. L. Org. Lett. 2003, 5, 4191.
28. For copper and amine-free condition using phosphine follow: (a) Yi, C.; Hua, R.
J. Org. Chem. 2006, 71, 2535; For copper and phosphine-free condition using
amines or tetra-butyl ammonium salts follow: (b) Liang, B.; Dai, M.; Chen, J.;
Yang, Z. J. Org. Chem. 2005, 70, 391.
Acknowledgment
29. (a) Mino, T.; Shirae, Y.; Saito, T.; Sakamoto, M.; Fujita, T. J. Org. Chem. 2006, 71,
9499; (b) Dang, D.; Zheng, Y.; Bai, Y.; Guo, X.; Ma, P.; Niu, J. Cryst. Growth Des.
2012, 12, 3856.
30. Kalyanasundaram, K. Photochemistry in Microheterogeneous Systems; Academic
Press: San Diego, 1987.
31. Israelachvili, J. Intermolecular and Surface Forces; Academic Press: San Diego,
1997.
32. Evans, D. F.; Allen, M.; Ninham, B. W.; Fouda, A. J. Solution Chem. 1984, 13, 87.
33. McCarroll, M.; Toerne, K.; Wandruszka, R. V. Langmuir 1998, 14, 2965.
34. Cho, C. S.; Jiang, L. H.; Lee, D. Y.; Shim, S. C. J. Heterocycl. Chem. 1997, 34, 1371.
S.S. and S.D. are thankful to CSIR, Govt. of India for providing
fellowship.
Supplementary data
Supplementary data (1H and 13C NMR spectra of all new com-
pounds associated with this article can be found in the online ver-
sion. Crystallographic data in CIF format are available free of charge
via the Internet at CCDC 866283. These data can be obtained free of
Cambridge Crystallographic Data Centre, 12, Union Road, Cam-
bridge CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.a-
c.uk)) associated with this article can be found, in the online
data include MOL files and InChiKeys of the most important com-
pounds described in this article.
35. General reaction procedure for the synthesis of isoindolinones: In
a round-
bottomed flask filled with 50 mL of water, aryl amide (3a–c, 1.0 equiv), alkyne
(4a–e, 1.5 equiv), Pd(CH3CN)2Cl2 (0.02 equiv), ligand 2 (0.025 equiv), and DBU
(1.5 equiv) were stirred vigorously at 80 °C for 1 h under aerobic condition in
the presence of CTAB (4 mmol). After completion of the reaction (monitored by
TLC), the contents of the reaction mixture were extracted with ethyl acetate
(3 Â 25 mL) and washed thoroughly with water until free from CTAB and base.
Column chromatography produced pure products (5a–j).
36. Spectral data of Z-3-(2-Pyridinyl)methylidene-N-(4-methylphen-yl)isoindolin-1-
one (5h): Yellow needles (yield: 72%); mp 164–166 °C; IR mmax (KBr): 3001,
1700, 1650, 1559, 1455, 1287, 1175, 1015, 856, 769 cmÀ1 1H NMR (CDCl3,
;
300 MHz): d = 2.44 (s, 3H, CH3), 6.26 (s, 1H), 7.19–7.23 (m, 1H), 7.26–7.37 (m,
5H), 7.54–7.6 (m, 2H), 7.67 (t, J = 7.8 Hz, 1H), 7.94–7.98 (m, 1H), 8.47-8.5 (m,
1H), 8.72 (br s, 1H); 13C NMR (CDCl3, 75 MHz): d = 21.24 (CH3), 111.64 (CH),
121.94 (CH), 123.37 (CH), 125.30 (CH), 125.34 (CH), 128.89 (2 Â CH), 128.89
(C), 130.10 (2 Â CH), 130.22 (CH), 131.84 (C), 132.18 (CH), 134.60 (C), 136.37
(CH), 138.57 (C), 140.88 (C), 149.29 (CH), 154.42 (C), 166.75 (C); HRMS (ESI):
m/z calcd for C21H16ON2 [M+Na]+ 335.1160; found: 335.1172.
References and notes
1. (a) Manabe, K. S.; Iimura, S.; Sun, X.-M.; Kobayashi, S. J. Am. Chem. Soc. 2002,
124, 11971; (b) Li, C. J.; Chan, T. H. Organic Reactions in Aqueous Media; John
Wiley: New York, 1997; (c) Shiri, M.; Zolfigol, M. A. Tetrahedron 2009, 65, 587.