Journal of the American Chemical Society
Communication
(4) (a) Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 1316.
(b) Jhurry, D.; Bhaw-Luximon, A.; Spassky, N. Macromol. Symp. 2001,
175, 67.
isolated, but an X-ray diffraction experiment on a degradation
product of 2 was successful (Figure S1). This partially hydrolyzed
species is a dimer wherein the two Y cores are bridged by both an
alkoxide and a hydroxyl coligand, the latter presumably arising
from exposure to adventitious water. Also, the additional NH
donor in the ligand backbone is coordinated to each Y center.
The coordination geometry at each Y center is monocapped
trigonal-prismatic. From the X-ray structure of the partially
hydrolysed dimer of 2, an Rh of 8.9 Å was obtained (see the SI).
These findings indicate that 1 and 2 are likely to adopt
(5) (a) Bakewell, C.; Platel, R. H.; Cary, S. K.; Hubbard, S. M.; Roaf, J.
M.; Levine, A. C.; White, A. J. P.; Long, N. J.; Haaf, M.; Williams, C. K.
Organometallics 2012, 31, 4729. (b) Chen, H.-L.; Dutta, S.; Huang, P.-
Y.; Lin, C.-C. Organometallics 2012, 31, 2016. (c) Darensbourg, D. J.;
Karroonnirun, O. Organometallics 2010, 29, 5627. (d) Alaaeddine, A.;
Thomas, C. M.; Roisnel, T.; Carpentier, J.-F. Organometallics 2009, 28,
1469. (e) Du, H.; Velders, A. H.; Dijkstra, P. J.; Sun, J.; Zhong, Z.; Chen,
X.; Feijen, J. Chem.Eur. J. 2009, 15, 9836. (f) Du, H.; Velders, A. H.;
Dijkstra, P. J.; Zhong, Z.; Chen, X.; Feijen, J. Macromolecules 2009, 42,
1058. (g) Bouyahyi, M.; Grunova, E.; Marquet, N.; Kirillov, E.; Thomas,
C. M.; Roisnel, T.; Carpentier, J. F. Organometallics 2008, 27, 5815.
(h) Nomura, N.; Ishii, R.; Yamamoto, Y.; Kondo, T. Chem.Eur. J.
2007, 13, 4433. (i) Hormnirun, P.; Marshall, E. L.; Gibson, V. C.; Pugh,
R. I.; White, A. J. P. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15343.
(j) Majerska, K.; Duda, A. J. Am. Chem. Soc. 2004, 126, 1026.
(k) Hormnirun, P.; Marshall, E. L.; Gibson, V. C.; White, A. J. P.;
Williams, D. J. J. Am. Chem. Soc. 2004, 126, 2688. (l) Zhong, Z.; Dijkstra,
P. J.; Feijen, J. J. Am. Chem. Soc. 2003, 125, 11291. (m) Zhong, Z. Y.;
Dijkstra, P. J.; Feijen, J. Angew. Chem., Int. Ed. 2002, 41, 4510.
(n) Nomura, N.; Ishii, R.; Akakura, M.; Aoi, K. J. Am. Chem. Soc. 2002,
124, 5938.
(6) (a) Yu, I.; Acosta-Ramírez, A.; Mehrkhodavandi, P. J. Am. Chem.
Soc. 2012, 134, 12758. (b) Horeglad, P.; Szczepaniak, G.; Dranka, M.;
Zachara, J. Chem. Commun. 2012, 48, 1171.
(7) (a) Stopper, A.; Okuda, J.; Kol, M. Macromolecules 2012, 45, 698.
(b) Heck, R.; Schulz, E.; Collin, J.; Carpentier, J.-F. J. Mol. Catal. A:
Chem. 2007, 268, 163.
(8) (a) Arnold, P. L.; Buffet, J.-C.; Blaudeck, R.; Sujecki, S.; Wilson, C.
Chem.Eur. J. 2009, 15, 8241. (b) Arnold, P. L.; Buffet, J. C.; Blaudeck,
R. P.; Sujecki, S.; Blake, A. J.; Wilson, C. Angew. Chem., Int. Ed. 2008, 47,
6033.
(9) Cao, T.-P.-A.; Labouille, S.; Auffrant, A.; Jean, Y.; Le Goff, X. F.; Le
Floch, P. Dalton Trans. 2011, 40, 10029.
1
mononuclear structures in THF solution. VT H NMR studies
using 1 also indicated some degree of fluxionality, but the
ROESY spectrum showed no exchange between the iminophos-
phorane substituents, consistent with a more constrained
structure.
In any case, the coordination geometries of 1 and 2 are quite
different from those of 3 and 4, with the former containing a
hexacoordinate Y and the latter a pentacoordinate Y. Thus, we
tentatively attribute the iso-selectivity observed with 1 and 2 to
their more sterically congested and constrained active sites
compared with 3 and 4. Such a finding is in line with Nomura’s
hypothesis regarding CEC observed with Al−salen complexes.5h
Further studies aimed at understanding the detailed mechanisms
of iso-selectivity are underway.
In conclusion, we have reported the first example of a highly
iso-selective and highly active yttrium phosphasalen initiator.
These initiators show very high rates, excellent polymerization
control, tolerance to low loadings, and high iso-selectivities.
When the phosphasalen ancillary ligand was changed, the high
rates were maintained, but the stereocontrol changed to highly
heterotactic. The new initiators do not require any chiral ancillary
ligands or complexes and operate by CEC mechanisms.
(10) (a) Platel, R. H.; White, A. J. P.; Williams, C. K. Inorg. Chem. 2011,
50, 7718. (b) Buchard, A.; Platel, R. H.; Auffrant, A.; Le Goff, X. F.; Le
Floch, P.; Williams, C. K. Organometallics 2010, 29, 2892. (c) Platel, R.
H.; White, A. J. P.; Williams, C. K. Chem. Commun. 2009, 4115.
(d) Buchard, A.; Auffrant, A.; Ricard, L.; Le Goff, X. F.; Platel, R. H.;
Williams, C. K.; Le Floch, P. Dalton Trans. 2009, 10219. (e) Platel, R. H.;
White, A. J. P.; Williams, C. K. Inorg. Chem. 2008, 47, 6840.
(11) Cao, T. P. A.; Buchard, A.; Le Goff, X. F.; Auffrant, A.; Williams,
C. K. Inorg. Chem. 2012, 51, 2157.
ASSOCIATED CONTENT
* Supporting Information
Detailed experimental protocols, X-ray data (CIF), polymer-
ization data and figures, and DOSY calculations. This material is
■
S
AUTHOR INFORMATION
Corresponding Author
■
(12) Coudane, J.; Ustariz-Peyret, C.; Schwach, G.; Vert, M. J. Polym.
Sci., Part A: Polym. Chem. 1997, 35, 1651.
(13) (a) Broderick, E. M.; Guo, N.; Vogel, C. S.; Xu, C.; Sutter, J.;
Miller, J. T.; Meyer, K.; Mehrkhodavandi, P.; Diaconescu, P. L. J. Am.
Chem. Soc. 2011, 133, 9278. (b) Broderick, E. M.; Thuy-Boun, P. S.;
Guo, N.; Vogel, C. S.; Sutter, J.; Miller, J. T.; Meyer, K.; Diaconescu, P. L.
Inorg. Chem. 2011, 50, 2870. (c) Broderick, E. M.; Diaconescu, P. L.
Inorg. Chem. 2009, 48, 4701.
Author Contributions
§C.B. and T.-P.-A.C. contributed equally.
Notes
The authors declare no competing financial interest.
(14) Ding, K.; Miranda, M. O.; Moscato-Goodpaster, B.; Ajellal, N.;
Breyfogle, L. E.; Hermes, E. D.; Schaller, C. P.; Roe, S. E.; Cramer, C. J.;
Hillmyer, M. A.; Tolman, W. B. Macromolecules 2012, 45, 5387.
(15) (a) Buffet, J.-C.; Okuda, J.; Arnold, P. L. Inorg. Chem. 2010, 49,
419. (b) Aluthge, D. C.; Patrick, B. O.; Mehrkhodavandi, P. Chem.
Commun. 2013.
(16) (a) Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S. H. Macromolecules
1987, 20, 904. (b) Tsuji, H.; Ikada, Y. Polymer 1999, 40, 6699.
(17) (a) Du, H. Z.; Pang, X.; Yu, H. Y.; Zhuang, X. L.; Chen, X. S.; Cui,
D. M.; Wang, X. H.; Jing, X. B. Macromolecules 2007, 40, 1904.
(b) Zhong, Z.; Dijkstra, P. J.; Feijen, J. Angew. Chem., Int. Ed. 2002, 41,
4510. (c) Normand, M.; Kirillov, E.; Roisnel, T.; Carpentier, J.-F.
Organometallics 2011, 31, 1448.
ACKNOWLEDGMENTS
The EPSRC, CNRS, and Ecole Polytechnique are thanked for
financial support.
■
REFERENCES
■
(1) (a) Inkinen, S.; Hakkarainen, M.; Albertsson, A. C.; Sodergard, A.
Biomacromolecules 2011, 12, 523. (b) Williams, C. K.; Hillmyer, M. A.
Polym. Rev. 2008, 48, 1. (c) Ragauskas, A. J.; Williams, C. K.; Davison, B.
H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Frederick, W. J.; Hallett, J. P.;
Leak, D. J.; Liotta, C. L.; Mielenz, J. R.; Murphy, R.; Templer, R.;
Tschaplinski, T. Science 2006, 311, 484.
(2) (a) Dijkstra, P. J.; Du, H. Z.; Feijen, J. Polym. Chem. 2011, 2, 520.
(b) Stanford, M. J.; Dove, A. P. Chem. Soc. Rev. 2010, 39, 486. (c) Platel,
R. H.; Hodgson, L. M.; Williams, C. K. Polym. Rev. 2008, 48, 11.
(3) Tsuji, H. Macromol. Biosci. 2005, 5, 569.
20580
dx.doi.org/10.1021/ja310003v | J. Am. Chem. Soc. 2012, 134, 20577−20580