Organic & Biomolecular Chemistry
Communication
18 L. A. Huber, K. Hoffmann, S. Thumser, N. Bocher, P. Mayer 41 M. X. Dong, A. Babalhavaeji, S. Samanta, A. A. Beharry and
and H. Dube, Angew. Chem., Int. Ed., 2017, 56(46), 14536–
14539.
19 A. S. Lubbe, Q. Liu, S. J. Smith, J. W. de Vries,
G. A. Woolley, Acc. Chem. Res., 2015, 48(10), 2662–2670.
42 D. Bleger and S. Hecht, Angew. Chem., Int. Ed., 2015, 54(39),
11338–11349.
J. C. M. Kistemaker, A. H. de Vries, I. Faustino, Z. Meng, 43 D. Bleger, J. Schwarz, A. M. Brouwer and S. Hecht, J. Am.
W. Szymanski, A. Herrmann and B. L. Feringa, J. Am. Chem.
Soc., 2018, 140(15), 5069–5076.
20 T. van Leeuwen, A. S. Lubbe, P. Stacko, S. J. Wezenberg and
B. L. Feringa, Nat. Rev. Chem., 2017, 1(12), 96.
Chem. Soc., 2012, 134(51), 20597–20600.
44 C. Knie, M. Utecht, F. Zhao, H. Kulla, S. Kovalenko,
A. M. Brouwer, P. Saalfrank, S. Hecht and D. Bleger,
Chemistry, 2014, 20(50), 16492–16501.
21 J. Broichhagen, J. A. Frank and D. Trauner, Acc. Chem. Res., 45 C. Hotzel, A. Marotto and U. Pindur, Eur. J. Med. Chem.,
2015, 48(7), 1947–1960. 2002, 37(5), 367–378.
22 K. Hull, J. Morstein and D. Trauner, Chem. Rev., 2018, 46 N. R. Wurtz, J. M. Turner, E. E. Baird and P. B. Dervan, Org.
118(21), 10710–10747. Lett., 2001, 3(8), 1201–1203.
23 M. M. Lerch, M. J. Hansen, G. M. van Dam, W. Szymanski 47 R. Sekiya, A. Diaz-Moscoso and P. Ballester, Chemistry,
and B. L. Feringa, Angew. Chem., Int. Ed., 2016, 55(37),
10978–10999.
24 W. A. Velema, W. Szymanski and B. L. Feringa, J. Am.
Chem. Soc., 2014, 136(6), 2178–2191.
25 A. Diaz-Moscoso and P. Ballester, Chem. Commun., 2017,
53(34), 4635–4652.
26 M. Banghart, K. Borges, E. Isacoff, D. Trauner and
R. H. Kramer, Nat. Neurosci., 2004, 7(12), 1381–1386.
27 L. Fenno, O. Yizhar and K. Deisseroth, Annu. Rev. Neurosci.,
2011, 34, 389–412.
2018, 24(9), 2182–2191.
48 C. W. Ong, Y. T. Yang, M. C. Liu, K. R. Fox, P. H. Liu and
H. W. Tung, Org. Biomol. Chem., 2012, 10(5), 1040–1046.
49 D. L. Boger, B. E. Fink, S. R. Brunette, W. C. Tse and
M. P. Hedrick, J. Am. Chem. Soc., 2001, 123(25), 5878–5891.
50 Y. W. Ham, W. C. Tse and D. L. Boger, Bioorg. Med. Chem.
Lett., 2003, 13(21), 3805–3807.
51 H. Deng, V. A. Bloomfield, J. M. Benevides and G. J. Thomas
Jr., Nucleic Acids Res., 2000, 28(17), 3379–3385.
52 J. Kypr, I. Kejnovska, D. Renciuk and M. Vorlickova, Nucleic
Acids Res., 2009, 37(6), 1713–1725.
28 L. Albert, J. Xu, R. W. Wan, V. Srinivasan, Y. L. Dou and
O. Vazquez, Chem. Sci., 2017, 8(6), 4612–4618.
29 S. A. Reis, B. Ghosh, J. A. Hendricks, D. M. Szantai-Kis,
L. Tork, K. N. Ross, J. Lamb, W. Read-Button, B. Zheng,
53 M. Deiana, Z. Pokladek, K. Matczyszyn, P. Mlynarz,
M. Buckle and M. Samoc, J. Mater. Chem. B, 2017, 5(5),
1028–1038.
H. Wang, C. Salthouse, S. J. Haggarty and R. Mazitschek, 54 F. Livolant and M. F. Maestre, Biochemistry, 1988, 27(8),
Nat. Chem. Biol., 2016, 12(5), 317–323. 3056–3068.
30 W. Szymanski, M. E. Ourailidou, W. A. Velema, F. J. Dekker 55 C. L. Peterson and J. C. Hansen, CSH Protoc, 2008, 3(12),
and B. L. Feringa, Chemistry, 2015, 21(46), 16517–16524. 1–8.
31 A. S. Lubbe, W. Szymanski and B. L. Feringa, Chem. Soc. 56 R. D. Makde, J. R. England, H. P. Yennawar and S. Tan,
Rev., 2017, 46(4), 1052–1079. Nature, 2010, 467(7315), 562–566.
32 E. Pazos, J. Mosquera, M. E. Vazquez and J. L. Mascarenas, 57 E. K. Liebler and U. Diederichsen, Org. Lett., 2004, 6(17),
ChemBioChem, 2011, 12(13), 1958–1973. 2893–2896.
33 A. Bergen, S. Rudiuk, M. Morel, T. Le Saux, H. Ihmels and 58 O. Vazquez, J. B. Blanco-Canosa, M. E. Vazquez,
D. Baigl, Nano Lett., 2016, 16(1), 773–780.
J. Martinez-Costas, L. Castedo and J. L. Mascarenas,
34 M. Deiana, Z. Pokladek, J. Olesiak-Banska, P. Mlynarz,
ChemBioChem, 2008, 9(17), 2822–28229.
M. Samoc and K. Matczyszyn, Sci. Rep., 2016, 6, 28605– 59 A. Bertin, S. Mangenot, M. Renouard, D. Durand and
28611. F. Livolant, Biophys. J., 2007, 93(10), 3652–3663.
35 S. Ghosh, D. Usharani, A. Paul, S. De, E. D. Jemmis and 60 P. N. Dyer, R. S. Edayathumangalam, C. L. White, Y. Bao,
S. Bhattacharya, Bioconjugate Chem., 2008, 19(12), 2332–
2345.
S. Chakravarthy, U. M. Muthurajan and K. Luger, Methods
Enzymol., 2004, 375, 23–44.
36 C. Dohno, S. N. Uno and K. Nakatani, J. Am. Chem. Soc., 61 A. Banerjee, P. Majumder, S. Sanyal, J. Singh, K. Jana,
2007, 129(39), 11898–11899. C. Das and D. Dasgupta, FEBS Open Bio, 2014, 4, 251–259.
37 T. Stafforst and D. Hilvert, Angew. Chem., Int. Ed., 2010, 62 Y. Arimura, H. Kimura, T. Oda, K. Sato, A. Osakabe,
49(51), 9998–10001.
H. Tachiwana, Y. Sato, Y. Kinugasa, T. Ikura, M. Sugiyama,
38 T. Goldau, K. Murayama, C. Brieke, S. Steinwand,
M. Sato and H. Kurumizaka, Sci. Rep., 2013, 3, 3510.
P. Mondal, M. Biswas, I. Burghardt, J. Wachtveitl, 63 D. Baigl and K. Yoshikawa, Biophys. J., 2005, 88(5), 3486–
H. Asanuma and A. Heckel, Chem. – Eur. J., 2015, 21(7),
2845–2854.
39 J. Garcia-Amoros and D. Velasco, Beilstein J. Org. Chem.,
2012, 8, 1003–1017.
3493.
64 S. Rudiuk, S. Franceschi-Messant, N. Chouini-Lalanne,
E. Perez and I. Rico-Lattes, Langmuir, 2008, 24(16), 8452–
8457.
40 H. M. Bandara and S. C. Burdette, Chem. Soc. Rev., 2012, 65 A. Venancio-Marques, A. Bergen, C. Rossi-Gendron,
41(5), 1809–1825.
S. Rudiuk and D. Baigl, ACS Nano, 2014, 8(4), 3654–3663.
This journal is © The Royal Society of Chemistry 2019
Org. Biomol. Chem.