Journal of the American Chemical Society
Page 14 of 17
Angew. Chem. Int. Ed. 2015, 54, 10303; l) Shi, S.-L.; Wong, Z.
synthesis: a) Jakubec, P.; Cockfield, D. M.; Dixon, D. J. Total
L.; Buchwald, S. L. Copper-catalysed enantioselective
stereodivergent synthesis of amino alcohols, Nature 2016, 532,
353; m) Zhan, G.; Shi, M.-L.; He, Q.; Lin, W.-J.; Ouyang, Q.; Du,
W.; Chen, Y.-C. Catalyst-Controlled Switch in Chemo- and
Diastereoselectivities: Annulations of Morita-Baylis-Hillman
Carbonates from Isatins, Angew. Chem., Int. Ed. 2016, 55, 2147;
n) Uraguchi, D.; Yoshioka, K.; Ooi, T. Complete
diastereodivergence in asymmetric 1,6-addition reactions
enabled by minimal modification of a chiral catalyst, Nat.
Commun. 2017, 8, 14793; o) Zheng, H.; Wang, Y.; Xu, C.; Xu, X.;
Lin, L.; Liu, X.; Feng, X. Stereodivergent synthesis of vicinal
Synthesis of (−)-Nakadomarin A, J. Am. Chem. Soc. 2009, 131,
16632; b) Jakubec, P.; Hawkins, A.; Felzmann, W.; Dixon, D. J.
Total Synthesis of Manzamine A and Related Alkaloids, J. Am.
Chem. Soc. 2012, 134, 17482; c) Kyle, A. F.; Jakubec, P.;
Cockfield, D. M.; Cleator, E.; Skidmore, J.; Dixon, D. J. Total
synthesis of (−)-nakadomarin A, Chem. Commun. 2011, 47,
10037; d) Jakubec, P.; Kyle, A. F.; Calleja, J.; Dixon, D. J. Total
synthesis of (−)-nakadomarin A: alkyne ring-closing metathesis,
Tetrahedron Lett. 2011, 52, 6094; e) Andrey, O.; Vidonne, A.;
Alexakis, A. Organocatalytic Michael addition, a convenient tool
in total synthesis. First asymmetric synthesis of (−)-
botryodiplodin, Tetrahedron Lett. 2003, 44, 7901; f) Pansare,
S. V.; Lingampally, R.; Kirby, R. L. Stereoselective Synthesis of
3-Aryloctahydroindoles and Application in a Formal Synthesis of
(−)-Pancracine, Org. Lett. 2010, 12, 556; g) Ishikawa, H.;
Suzuki, T.; Hayashi, Y. High-Yielding Synthesis of the
Anti-Influenza Neuramidase Inhibitor (−)-Oseltamivir by Three
“One-Pot” Operations, Angew. Chem., Int. Ed. 2009, 48, 1304;
h) Hoashi, Y.; Yabuta, T.; Takemoto, Y. Bifunctional thiourea-
catalyzed enantioselective double Michael reaction of γ,δ-
unsaturated β-ketoester to nitroalkene: asymmetric synthesis of
(−)-epibatidine, Tetrahedron Lett. 2004, 45, 9185; i) Elsner, P.;
Jiang, H.; Nielsen, J. B.; Pasi, F.; Jørgensen, K. A. A modular and
organocatalytic approach to γ-butyrolactone autoregulators
from Streptomycetes, Chem. Commun. 2008, 5827; j) Xu, G.-
Q.; Lin, G.-Q.; Sun, B.-F. Concise asymmetric total synthesis of
(−)-patchouli alcohol, Org. Chem. Front. 2017, 4, 2031.
1
2
3
4
5
6
7
8
9
quaternary-quaternary
stereocenters
and
bioactive
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
hyperolactones, Nat. Commun. 2018, 9, 1968.
6
Comprehensive review: Zheng, K.; Liu, X.; Feng, X. Recent
Advances in Metal-Catalyzed Asymmetric 1,4-Conjugate
Addition (ACA) of Nonorganometallic Nucleophiles, Chem.
Rev. 2018, 118, 7586.
7
Selected reviews about 1,4-additions: a) Kanai, M.;
Shibasaki, M. in Catalytic Asymmetric Synthesis, 2nd ed. (Ed.:
Ojima, I.), Wiley: New York, 2000; pp 569-592; b) Christoffers,
J.; Baro, A. Construction of Quaternary Stereocenters: New
Perspectives through Enantioselective Michael Reactions,
Angew. Chem., Int. Ed. 2003, 42, 1688; c) Christoffers, J.;
Koripelly, G.; Rosiak, A.; Rössle, M. Recent Advances in Metal-
Catalyzed Asymmetric Conjugate Additions, Synthesis 2007,
1279; d) Jautze, S.; Peters, R. Catalytic Asymmetric Michael
Additions of α-Cyanoacetates, Synthesis 2010, 365.
8 Selected examples: a) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu,
X.; Guo, C.; Foxman, B. M.; Deng, L. Stereocontrolled Creation
of Adjacent Quaternary and Tertiary Stereocenters by a Catalytic
Conjugate Addition, Angew. Chem., Int. Ed. 2005, 44, 105; b)
Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y.
Enantio- and Diastereoselective Michael Reaction of 1,3-
11 Note that in ref. 8f the relative configuration depicted for the
products was erroneous (Kim, D., personal communication, May
10, 2018).
12
For pioneering work on the general concept of cooperative
Lewis acid / Brønsted base catalysis, see e.g.: a) Shibasaki, M.;
Kumagai, N. Lewis acid–Brønsted base catalysis, in Cooperative
Catalysis – Designing Efficient Catalysts for Synthesis; R.
Peters (Ed.), Wiley-VCH, Weinheim, 2015; b) Shibasaki, M.;
Yoshikawa, N. Lanthanide Complexes in Multifunctional
Asymmetric Catalysis, Chem. Rev. 2002, 102, 2187; c) Sasai, H.;
Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. Basic character of rare
earth metal alkoxides. Utilization in catalytic carbon-carbon
bond-forming reactions and catalytic asymmetric nitroaldol
reactions, J. Am. Chem. Soc. 1992, 114, 4418; d) Sasai, H.; Arai,
T.; Satow, Y.; Houk, K. N.; Shibasaki, M. The First
Heterobimetallic Multifunctional Asymmetric Catalyst, J. Am.
Chem. Soc. 1995, 117, 6194; e) Emori, E.; Arai, T.; Sasai, H.; A
Catalytic Michael Addition of Thiols to α,β-Unsaturated
Carbonyl Compounds:ꢀ Asymmetric Michael Additions and
Asymmetric Protonations, Shibasaki, M. J. Am. Chem. Soc.
1998, 120, 4043; f) Yoshikawa, N.; Yamada, Y. M. A.; Das, J.;
Sasai, H.; Shibasaki, M. Direct Catalytic Asymmetric Aldol
Reaction, J. Am. Chem. Soc. 1999, 121, 4168; g) Yamagiwa, N.;
Qin, H.; Matsunaga, S.; Shibasaki, M. Lewis Acid−Lewis Acid
Heterobimetallic Cooperative Catalysis:ꢀ Mechanistic Studies
and Application in Enantioselective Aza-Michael Reaction, J.
Am. Chem. Soc. 2005, 127, 13419; h) Gnanadesikan, V.;
Horiuchi, Y.; Ohshima, T.; Shibasaki, M. Direct Catalytic
Asymmetric Aldol-Tishchenko Reaction, J. Am. Chem. Soc.
2004, 126, 7782; i) Kim, Y. S.; Matsunaga, S.; Das, J.; Sekine,
A.; Ohshima, T.; Shibasaki, M. Stable, Storable, and Reusable
Asymmetric Catalyst:ꢀ A Novel La-linked-BINOL Complex for
the Catalytic Asymmetric Michael Reaction, J. Am. Chem. Soc.
2000, 122, 6506; j) Nemoto, T.; Ohshima, T.; Yamaguchi, K.;
Shibasaki, M. Catalytic Asymmetric Epoxidation of Enones
Using La−BINOL−Triphenylarsine Oxide Complex:ꢀ Structural
Determination of the Asymmetric Catalyst, J. Am. Chem. Soc.
2001, 123, 2725; k) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.;
Jacobsen, E. N. Asymmetric catalysis with water: efficient kinetic
resolution of terminal epoxides by means of catalytic hydrolysis,
Science 1997, 277, 936; l) Reddy, J. M.; Jacobsen, E. N.
AsymmetricꢀCatalyticꢀSynthesisꢀofꢀα-AryloxyꢀAlcohols: Kinetic
Resolution of Terminal Epoxides via Highly Enantioselective
Dicarbonyl Compounds to Nitroolefins Catalyzed by
a
Bifunctional Thiourea, J. Am. Chem. Soc. 2005, 127, 119; c)
Malerich, J. P.; Hagihara, K.; Rawal, V. H. Chiral Squaramide
Derivatives are Excellent Hydrogen Bond Donor Catalysts, J.
Am. Chem. Soc. 2008, 130, 14416; d) Chen, Z.; Furutachi, M.;
Kato, Y.; Matsunaga, S.; Shibasaki, M. A Stable Homodinuclear
Biscobalt(III)–Schiff Base Complex for Catalytic Asymmetric
1,4-Addition Reactions of β-Keto Esters to Alkynones, Angew.
Chem., Int. Ed. 2009, 48, 2218; e) Yu, Z. P.; Liu, X. H.; Zhou, L.;
Lin, L. L.; Feng, X. M. Bifunctional Guanidine via an Amino
Amide Skeleton for Asymmetric Michael Reactions of
β-Ketoesters with Nitroolefins: A Concise Synthesis of Bicyclic
β-Amino Acids, Angew. Chem., Int. Ed. 2009, 48, 5195; f)
Kwon, K.; Kim, D. Y. Organocatalytic Asymmetric Michael
Addition of β-Ketoesters to Nitroalkenes, Bull. Korean Chem.
Soc. 2009, 30, 1441; g) Furutachi, M.; Chen, Z.; Matsunaga, S.;
Shibasaki, M. Catalytic Asymmetric 1,4-Additions of β-Keto
Esters to Nitroalkenes Promoted by
a
Bifunctional
Homobimetallic Co2-Schiff Base Complex, Molecules 2010, 15,
532; h) Bae, H. Y.; Some, S.; Oh, J. S.; Lee, Y. S.; Song, C. E.
Hydrogen bonding mediated enantioselective organocatalysis in
brine:
significant
rate
acceleration
and
enhanced
stereoselectivity in enantioselective Michael addition reactions
of 1,3-dicarbonyls to β-nitroolefins, Chem. Commun. 2011, 47,
9621; i) Li, X.; Li, X.; Peng, F.; Shao, Z. Mutually Complementary
Metal- and Organocatalysis with Collective Synthesis:
Asymmetric Conjugate Addition of 1,3-Carbonyl Compounds to
Nitroenynes and Further Reactions of the Products, Adv. Synth.
Catal. 2012, 354, 2873; j) Chen, J.; Huang, Y. Asymmetric
catalysis with N-heterocyclic carbenes as non-covalent chiral
templates, Nat. Commun. 2014, 5, 3437.
9
a) Ono, N. The Nitro Group in Organic Synthesis; Wiley-
VCH: New York, 2001; b) Ballini, R.; Petrini, M. Recent
synthetic developments in the nitro to carbonyl conversion (Nef
reaction), Tetrahedron 2004, 60, 1017.
10
Selected examples for the use of addition reactions of
Michael donors to nitroolefins in the inherently favored product
ACS Paragon Plus Environment