Organic Letters
Letter
Carbon Centers with High Enantioselectivity. Angew. Chem., Int. Ed.
2011, 50, 5998.
AUTHOR INFORMATION
■
Corresponding Authors
(9) (a) Vicario, J.; Ezpeleta, J. M.; Palacios, F. Asymmetric
Cyanation of α-Ketiminophosphonates Catalyzed by Cinchona
Alkaloids. Enantioselective Synthesis of Tetrasubstituted α-Amino-
phosphonic Acid Derivatives From Trisubstituted α-Aminophospho-
nates. Adv. Synth. Catal. 2012, 354, 2641. (b) Vicario, J.; Ortiz, P.;
Ezpeleta, J. M.; Palacios, F. Asymmetric Synthesis of Functionalized
Tetrasubstituted α-Aminophosphonates through Enantioselective
Aza-Henry Reaction of Phosphorylated Ketimines. J. Org. Chem.
2015, 80, 156.
ORCID
Author Contributions
(10) Vicario, J.; Ortiz, P.; Palacios, F. Synthesis of Tetrasubstituted
α-Aminophosphonic Acid Derivatives from Trisubstituted α-Amino-
phosphonates. Eur. J. Org. Chem. 2013, 2013, 7095.
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
(11) (a) Hiratake, J.; Oda, J. Aminophosphonic and Aminoboronic
Acids as Key Elements of a Transition State Analogue Inhibitor of
Enzymes. Biosci., Biotechnol., Biochem. 1997, 61, 211. (b) Kafarski, P.;
Lejczak, B. Aminophosphonic Acids of Potential Medical Importance.
Curr. Med. Chem.: Anti-Cancer Agents 2001, 1, 301. (c) Berlicki, L.;
Kafarski, P. Computer-Aided Analysis and Design of Phosphonic and
Phosphinic Enzyme Inhibitors as Potential Drugs and Agrochemicals.
Curr. Org. Chem. 2005, 9, 1829. (d) Van der Jeught, K.; Stevens, C. V.
Direct Phosphonylation of Aromatic Azaheterocycles. Chem. Rev.
2009, 109, 2672.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
́
Financial support by Ministerio de Ciencia, Innovacion y
Universidades (RTI2018-101818-B-I00, MCIU/AEI/FEDER,
UE), and Gobierno Vasco (GV, IT 992-16) is gratefully
acknowledged. The authors are thankful for the technical and
human support provided by SGIker (UPV/EHU/ERDF, EU).
(12) (a) Nguyen, L. A.; He, H.; Pham-Huy, C. Chiral Drugs: An
Overview. Int. J. Biomedical Sci. 2006, 2, 85. (b) Kasprzyk-Hordern, B.
Pharmacologically active compounds in the environment and their
chirality. Chem. Soc. Rev. 2010, 39, 4466.
REFERENCES
■
̈
(1) Reformatsky, S. Neue Synthese zweiatomiger einbasischer
Sauren aus den Ketonen. Ber. Dtsch. Chem. Ges. 1887, 20, 1210.
(13) (a) Kafarski, P.; Lejczak, B.; Szewczyk, J. Optically active 1-
aminoalkanephosphonic acids. Dibenzoyl-L-tartaric anhydride as an
effective agent for the resolution of racemic diphenyl 1-amino-
alkanephosphonates. Can. J. Chem. 1983, 61, 2425. (b) Atherton, F.
R.; Hassall, C. H.; Lambert, R. W. Synthesis and structure-activity
relationships of antibacterial phosphonopeptides incorporating (1-
aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid. J.
Med. Chem. 1986, 29, 29. (c) Drag, M.; Pawelczak, M.; Kafarski, P.
Stereoselective synthesis of 1-aminoalkanephosphonic acids with two
chiral centers and their activity towards leucine aminopeptidase.
Chirality 2003, 15, S104. (d) Orsini, F.; Sello, G.; Sisti, M.
Aminophosphonic acids and derivatives. Synthesis and biological
applications. Curr. Med. Chem. 2010, 17, 264. (e) Kudzin, Z. H.;
Kudzin, M. H.; Drabowicz, J. S. F.; Stevens, C. V. Aminophosphonic
Acids - Phosphorus Analogues of Natural Amino Acids. Part 1:
Syntheses of α-Aminophosphonic Acids. Curr. Org. Chem. 2011, 15,
2015. (f) Debrouwer, W.; Hertsen, D.; Heugebaert, T. S. A.; Boydas,
E. B.; Van Speybrouck, V.; Catak, S.; Stevens, C. V. Tandem Addition
of Phosphite Nucleophiles Across Unsaturated Nitrogen-Containing
Systems: Mechanistic Insights on Regioselectivity. J. Org. Chem. 2017,
82, 188.
(2) For some reviews, see: (a) Ocampo, R.; Dolbier, W. R., Jr The
Reformatsky reaction in organic synthesis. Recent advances.
Tetrahedron 2004, 60, 9325. (b) Orsini, F.; Sello, G. Transition
Metals-Mediated Reformatsky Reactions. Curr. Org. Synth. 2004, 1,
111. (c) Baba, A.; Yasuda, M.; Nishimoto, Y. Zinc enolates: the
Reformatsky and Blaise reactions. In Comprehensive Org. Synth.;
Knochel, P., Molander, G. A., Eds.; Elsevier: Amsterdam, 2014; pp
523−542.
(3) (a) Adrian, J. C.; Snapper, M. L. Multiple Component
Reactions: An Efficient Nickel-Catalyzed Reformatsky-Type Reaction
and Its Application in the Parallel Synthesis of β-Amino Carbonyl
Libraries. J. Org. Chem. 2003, 68, 2143. (b) Kanai, K.; Wakabayashi,
H.; Honda, T. Rhodium-Catalyzed Reformatsky-Type Reaction. Org.
Lett. 2000, 2, 2549.
(4) (a) Cozzi, P. G. Reformatsky Reactions Meet Catalysis and
Stereoselectivity. Angew. Chem., Int. Ed. 2007, 46, 2568. (b) Fernan-
dez-Ibanez, M. A.; Macía, B.; Alonso, D. A.; Pastor, I. M. Recent
́
̃
Advances in the Catalytic Enantioselective Reformatsky Reaction. Eur.
J. Org. Chem. 2013, 2013, 7028. (c) Pellissier, H. Recent
developments in the asymmetric Reformatsky-type reaction. Beilstein
J. Org. Chem. 2018, 14, 325.
(5) Cozzi, P. G. A Catalytic Enantioselective Imino-Reformatsky
Reaction. Adv. Synth. Catal. 2006, 348, 2075.
(6) (a) Tarui, A.; Nishimura, H.; Ikebata, T.; Tahira, A.; Sato, K.;
Omote, M.; Minami, H.; Miwa, Y.; Ando, A. Ligand-Promoted
Asymmetric Imino-Reformatsky Reaction of Ethyl Dibromofluoroa-
cetate. Org. Lett. 2014, 16, 2080. (b) Tarui, A.; Ikebata, T.; Sato, K.;
Omote, M.; Ando, A. Enantioselective synthesis of α,α-difluoro-β-
lactams using amino alcohol ligands. Org. Biomol. Chem. 2014, 12,
6484.
̃
(7) (a) De Munck, L.; Vila, C.; Munoz, M. C.; Pedro, J. R. Catalytic
Enantioselective Aza-Reformatsky Reaction with Cyclic Imines. Chem.
- Eur. J. 2016, 22, 17590. (b) De Munck, L.; Sukowski, V.; Vila, C.;
Munoz, M. C.; Pedro, J. R. Catalytic enantioselective-aza-Reformatsky
̃
reaction with seven-membered cyclic imines dibenzo[b,f ][1,4]-
oxazepines. Org. Chem. Front. 2017, 4, 1624.
(14) Kitamura, M.; Suga, S.; Niwa, M.; Noyori, R. Self and Nonself
Recognition of Asymmetric Catalysts. Nonlinear Effects in the Amino
Alcohol-Promoted Enantioselective Addition of Dialkylzincs to
Aldehydes. J. Am. Chem. Soc. 1995, 117, 4832.
́
́ ́
̃
ez, M. A.; Macia, B.; Minnaard, A. J.;
(15) (a) Fernandez-Iban
Feringa, B. L. Catalytic enantioselective reformatsky reaction with
́
aldehydes. Angew. Chem., Int. Ed. 2008, 47, 1317. (b) Fernandez-
́ ́
̃
ez, M. A.; Macia, B.; Minnaard, A. J.; Feringa, B. L. Catalytic
Iban
enantioselective Reformatsky reaction with ketones. Chem. Commun.
́
́
́
2008, 2571. (c) Fernandez-Ibanez, M. A.; Macia, B.; Minnaard, A. J.;
Feringa, B. L. Catalytic enantioselective Reformatsky reaction with
̃
ortho-substituted diarylketones. Org. Lett. 2008, 10, 4041.
́
́
(16) (a) Lewínski, J.; Sliwinski, W.; Dranka, M.; Justyniak, I.;
Lipkowski, J. Reactions of [ZnR2(L)] Complexes with Dioxygen: A
New Look at an Old Problem. Angew. Chem., Int. Ed. 2006, 45, 4826.
(b) Lewínski, J.; Ochal, Z.; Bojarski, E.; Tratkiewicz, E.; Justyniak, I.;
Lipkowski, J. First Structurally Authenticated Zinc Alkylperoxide: A
Model System for the Epoxidation of Enones. Angew. Chem., Int. Ed.
2003, 42, 4643. (c) Bertrand, M.; Feray, L.; Gastaldi, S. Synthesis and
(8) (a) Quaternary Stereocentres: Challenges and Solutions for Organic
Synthesis; Christoffers, J., Baro, A., Eds.; Wiley-VCH: Weinheim,
2006. (b) Shimizu, M. Construction of Asymmetric Quaternary
D
Org. Lett. XXXX, XXX, XXX−XXX