T.-W. Li et al. / Tetrahedron Letters 54 (2013) 134–137
137
2. Koksch, B.; Sewald, N.; Hofmann, H.-J.; Burger, K.; Jakubke, H.-D. J. Pept. Sci.
1997, 3, 157–167.
Conclusion
In conclusion, a convenient one-pot method for the simulta-
3. Glen, A. T.; Hughes, L. R.; Morris, J. J.; Taylor, P. J. Proceedings of the 3rd SCI-RSC
Medicinal Chemistry Symposium; Spec. Publ.-R. Soc. Chem.; Lambert, R. W., Ed.;
Whitstable Litho Ltd.: Whitstable, Kent, U.K., 1986; pp 345-361.
4. Morris, J. J.; Hughes, L. R.; Glen, A. T.; Taylor, P. J. J. Med. Chem. 1991, 34, 447–
455.
5. Grant, T. L.; Wickenden, A. D.; Grimwood, S.; Todd, H. H.; Gibson, K. H.;
Edwards, G.; Weston, A. H.; Russell, N. J. W. Proceedings of the British
Pharmacological Society, University of Manchester, 1994, P2.
6. Grant, T.; Frank, C. A.; Kau, S. T.; Li, J. H.; McLaren, F. M.; Ohnmacht, C. J.;
Russell, K.; Shapiro, H. S.; Trivedi, S. Bioorg. Med. Chem. Lett. 1993, 3, 2723–
2724.
7. Grant, T. L.; Ohnmacht, C. J.; Howe, B. B. Trends Pharmacol. Sci. 1994, 15, 402–
404.
neous protection and activation of (R)-2-amino-3,3,3-trifluoro-2-
methylpropanoic acid for amide formation has been developed.
The transformation was effected by the reaction of (R)-2-amino-
3,3,3-trifluoro-2-methylpropanoic acid with Vilsmeier reagent,
affording N,N-dimethylformamidine protected acid chlorides.
These acid chlorides were used in situ for direct coupling reactions
with weakly nucleophilic anilines to form the corresponding ani-
lides. The pharmacological evaluations of these (R)-2-amino-
3,3,3-trifluoro-2-methyl-N-phenylpropanamide derivatives, such
as PDK inhibitory and anti-cancer activities, are in progress.
8. Bonnet, S.; Archer, S. L.; Allalunis-Turner, J.; Haromy, A.; Beaulieu, C.;
Thompson, R.; Lee, C. T.; Lopaschuk, G. D.; Puttagunta, L.; Bonnet, S.; Harry,
G.; Hashimoto, K.; Porter, C. J.; Andrade, M. A.; Thebaud, B.; Michelakis, E. D.
Cancer Cell 2007, 11, 37–51.
9. Rebernitz, G. R.; Aicher, T. D.; Stanton, J. L.; Gao, J.; Shetty, S. S.; Knorr, D. C.;
Strohschein, R. J.; Tan, J.; Brand, L. J.; Liu, C.; Wang, W. H.; Vinluan, C. C.; Kaplan,
E. L.; Dragland, C. J.; Delgrande, D.; Islam, A.; Lozito, R. J.; Liu, X.; Maniara, W.
M.; Mann, W. R. J. Med. Chem. 2000, 43, 2248–2257.
10. Inaba, T.; Kozono, I.; Fujita, M.; Ogura, K. Bull. Chem. Soc. Jpn. 1992, 65, 2359–
2365.
Acknowledgment
We would like to thank the National Natural Science Founda-
tion of China for financial support (No. 20872078).
11. Huguenot, F.; Brigaud, T. J. Org. Chem. 2006, 71, 7075–7078.
12. Kobzev, S. V.; Soloshonok, V. A.; Galushko, S. V.; Yagupolskii, Y. L.; Kukhar, V. P.
Zh. Obshch. Khim. 1989, 59, 909.
Supplementary data
13. Burger, K.; Mütze, K.; Hollweck, W.; Koksch, B.; Kuhl, P.; Jakubke, H.-D.; Riede,
J.; Schier, A. J. Prakt. Chem. 1993, 335, 321–331.
14. Zhichkin, P. E.; Peterson, L. H.; Beer, C. M.; Rennells, W. M. J. Org. Chem. 2008,
73, 8954–8959.
Supplementary data associated with this article can be found,
15. Typical procedure: The Vilsmeier reagent was prepared by adding oxalyl
chloride (2.52 g, 19.8 mmol) dropwise to a solution of anhyd. DMF (1.50 g,
20.5 mmol) in CH2Cl2 (20 mL) at 0–5 °C (CAUTION: Foaming!) and stirring at rt
for 30 min. Compound 5 (1.57 g, 10.0 mmol) was added at 0 °C to Vilsmeier
reagent (20.0 mmol) in CH2Cl2 (20 mL) prepared as described above, and the
mixture was stirred at rt for 1 h. At 0 °C, a solution of substituted aniline
(0.93 g, 10.0 mmol) in CH2Cl2 (10 mL) was added, followed by DIPEA (5.16 g,
31.0 mmol), and the mixture was stirred for 1 h at rt. It was then concentrated
to dryness, and the residue was heated at reflux in ethanol (25 mL) with
ethylenediamine (2.70 g, 45.0 mmol) for 3 h. The resulting mixture was
evaporated to dryness, stirred with water (50 mL), and partitioned between
CH2Cl2 and water. The organic layer was dried (Na2SO4) and concentrated. The
residue was purified by column chromatography (petroleum ether/ethyl
acetate) to afford compound 9a (53%, 1.23 g). (R)-2-amino-3,3,3-trifluoro-2-
methyl-N-phenylpropanamide (9a):Brown oil, 1H NMR (300 MHz, CDCl3) d 9.39
(s, 1H), 7.57 (d, J = 8.2 Hz, 2H), 7.32 (t, J = 7.8 Hz, 2H), 7.12 (t, J = 7.0 Hz, 1H),
1.96 (s, 2H), 1.58 (s, 3H). 13C NMR (75 MHz, CDCl3) d 167.3, 137.2, 129.4, 125.8
(q, J = 284.7 Hz), 124.9, 119.8, 118.6, 115.3, 61.4 (q, J = 27.5 Hz), 21.3. ESI-
MS:m/z = 233.1 [M+H]+, 255.0 [M+Na]+.
References and notes
1. (a) Soloshonok V. A., Ed. Fluorine-containing Amino acids and Peptides:
Fluorinated Synthons for Life Sciences. In Fluorine-containing Synthons ACS
Symposium Series 911; American Chemical Society: Washington, 2005.;
(b)Bioorganic and Medicinal Chemistry of Fluorine; Begue, J.-P., Bonnet-Delpon,
D., Eds.; Wiley: New York, 2008; (c)Fluorine in Medicinal Chemistry and Chemical
Biology; Ojima, I., Ed.; Wiley-Blackwell: New York, 2009; (d) Bravo, P.; Farina,
A.; Frigerio, M.; ValdoMeille, S.; Viani, F.; Soloshonok, V. A. Tetrahedron:
Asymmetry 1994, 5, 987–1004; (e) Soloshonok, V. A.; Kirilenko, A. G.; Fokina, N.
A.; Galushko, S. V.; Kukhar, V. P.; Svedas, V. K.; Resnati, G. Tetrahedron:
Asymmetry 1994, 5, 1225–1228; (f) Soloshonok, V. A.; Avilov, D. V.; Kukhar, V. P.
Tetrahedron: Asymmetry 1996, 7, 1547–1555; (g) Soloshonok, V. A.; Hayashi, T.;
Ishikawa, K.; Nagashima, N. Tetrahedron Lett. 1994, 35, 1055–1068; (h)
Soloshonok, V. A.; Kacharov, A. D.; Hayashi, T. Tetrahedron 1996, 52, 245–
254; (i) Soloshonok, V. A.; Kacharov, A. D.; Avilov, D. V.; Hayashi, T. Tetrahedron
Lett. 1996, 37, 7845–7848.