SYNTHETIC TRANSFORMATIONS OF ISOQUINOLINE ALKALOIDS
1483
m/z (Irel, %): 558 [M]+ (15), 502 (68), 461 (100), 268 (41),
99 (49), 97 (70), 70 (37), 58 (64), 56 (35), 42 (26). Found
m/z 558.2841 [M]+.C32H38N4O5. Calculated m 558.2837.
REFERENCES
1. Coop, A., Grivas, K., Husbands, S., and Lewis, J.W.,
Tetrahedron Lett., 1995, vol. 36, p. 1689.
2. Maat, L., Woudenberg, R.H., Meuzelaar, G.J., and
Linders, J.T.M., Bioorg. Med. Chem., 1999, vol. 7, p. 529.
3. Kalinin, V.N., Shishkov, I.V., Moiseev, S.K., Shults, E.E.,
Tolstikov, G.A., Sosnina, N.I., Petrovskii, P.V.,
Lyssenko, K.A. and Schmidhammer, H., Helv. Shim. Acta,
2006, vol. 89, p. 861.
1-[3-(4-tert-Butoxycarbonylpiperazin-1-yl)prop-
ynyl]-7α,8α-(N’-methyl-2,5-dioxopyrrolidino)-[3,4-
h]-6,14-endo-etheno-6,7,8,14-tetrahydrothebaine
(XXIII). A flask in an argon flow was charged at stirring
in succession with 0.0085 g (0.27 mmol) of paraformal-
dehyde, 0.05 g (0.27 mmol) of N-Boc-piperazine (XX),
0.0004 g (0.002 mmol) of CuI, 4 ml of dioxane, and 0.1 g
(0.22 mmol) of compound XV. The mixture was heated
at 90–95°C for 5 h, then 0.0085 g (0.27 mmol) of para-
formaldehyde, 0.05 g (0.27 mmol) of N-Boc-piperazine,
0.0004 g (0.002 mmol) of CuI, 1 ml of dioxane were again
added, and the heating was continued for 7.5 h more. The
reaction mixture was evaporated in a Petri dish, the solid
residue was treated with chloroform and water, the layers
were separated, and the product was extracted from the
water layer with chloroform. The combined extracts were
washed with water, dried with MgSO4, evaporated in a
vacuum, and the residue was chromatographed on silica
gel (eluent chloroform–ethanol). Yield 0.107 g (80%). IR
spectrum, cm–1: 2208, 1770, 1701, 1620, 1598, 765, 700.
1H NMR spectrum, δ, ppm (J, Hz): 1.44 s [9H, C(CH3)3],
1.86–2.00 m (2H, H15), 2.35–2.53 m (3H, H10,16,16), 2.45 s
(3H, CH3N17), 2.54–2.60 m (4H, H3′′′,3′′′,5′′′,5′′′), 2.86 s
(3H, CH3N1′), 3.03 d (1H, H8, J 8.0), 3.18 d (1H, H10,
J 19.0), 2.54–2.60 m (4H, H2′′′,2′′,6′′′,6′′′), 3.55 s (2H, H1C),
3.68 s (3H, CH3OC6), 3.77 s (3H, CH3OC3), 4.01 d (1H,
H9, J 6.7), 4.19 d (1H, H7, J 8.0), 4.66 d (1H, H5, J 0.9),
5.34 d (1H, H18, J 8.5), 5.71 m (1H, H19), 6.74 s (1H, H2).
13C NMR spectrum, δ, ppm: 22.42 (C10), 24.70 (CH3N1’),
28.40 [C(CH3)3], 33.45 (C15), 41.42 (C7), 42.33 (C8),
43.28 (CH3N17), 44.77 (C13,14), 44.92 (C16), 47.86 (C1C),
48.02 (2C, C2′′′, 4′′′), 51.74 (CH3OC6), 51.88 (2C, C2′′′, 6′′′),
56.27 (CH3OC3), 56.85 (C9), 79.72 [C(CH3)3], 80.52
(C6), 83.33 (C1b), 86.85 (C1a), 91.33 (C5), 113.99 (C1),
116.74 (C2), 128.99 (C19), 130.13 (C11), 132.73 (C12),
133.59 (C18), 142.03 (C3), 148.38 (C4), 154.69 (C=O),
174.05 (C5′), 177.27 (C2′). Mass spectrum, m/z (Irel, %):
644 [M]+ (37), 543 (46), 501 (21), 461 (100), 458 (34),
266 (33), 204 (15), 57 (22). Found m/z 644.3191 [M]+.
C36H44N4O7. Calculated m 644.3205.
4. Yavuz, S. and Yildirir, Y., Helv. Chim. Acta, 2010, vol. 93,
p. 2406.
5. Li, W., Tao, Y.-M., Tang, Y., Xu, X.-J., Chen, J., Fu, W.,
Wang, X.-H., Chao, B., Sheng, W., Xie, Q., Qiu, Z.-B.,
and Liu, J.-G., Bioorg. Med. Chem., 2010, vol. 20, p. 418.
6. Shafiee, A., Amanlou, M., Farsam, H., Dehpour, A.R.,
Mir-Ershadi, F., and Mani, A.R., Pharm. Acta Helv., 1999,
vol. 73, p. 251.
7. Shul’ts, E.E., Tolstikova, T.G., Tolstikov, S.E.,
Daibova, V.T., Shakirov, M.M., Bolkunov, A.V., and
Tolstikov, G.A., Khim.-Farm. Zh., 2007, no. 2, p. 15.
8. Bauman, V.T., Shul’ts, E.E., Shakirov, M.M., and
Tolstikov, G.A., Zh. Org. Khim., 2007, vol. 43, p. 529.
9. Görlitzer, K. and Schumann, R., Pharmazie, 1992, vol. 47,
p. 893.
10. Nan, Y., Xu, W., Zaw, K., Hughes, K.E., Huang, L.-F.,
Dunn, III, W.J., Bauer, L., and Bhargava, H.N.,
J. Heterocycl. Chem., 1997, vol. 34, p. 1995.
11. Bauman, V.T., Shul’ts, E.E., Shakirov, M.M., and
Tolstikov, G.A., Izv. Akad. Nauk, Ser. Khim., 2007, p. 1206.
12. Bieber, L.W. and da Silva, M.F., Tetrahedron Lett., 2004,
vol. 45, p. 8281.
13. Stothers, J.B., Carbon-13, NMR Spectroscopy, New York:
Acad. Press, 1972, 251 p.
14. pSetea, M., Schüllner, F., Moisa, R.C., Bersetei-
Gurske, I.P., Schraml, B., Dörfler, C., Aceto, M.D.,
Harris, L.S., Coop, A., and Schmidhammer, H., J. Med.
Chem., 2004, no. 47, p. 3243.
15. Wentland, M.P., Lu, Q., Lou, R., Bu, Y., Knapp, B.I., and
Bidlack, J.M., Bioorg. Med. Chem. Lett., 2005, vol. 15,
2107.
16. Tolstikova, T.G., Morozova, E.A., Bolkunov, A.V., Dol-
gikh, M.P., Bauman, V.T., Tolstikov, S.E., and Shul’ts, E.E.,
Vopr. Biol. Med. Farm. Khim, 2007, no. 1, p. 39.
17. Sintezy organicheskikh preparatov (Synheses of Organic
Chemicals), Moscow: 1949, p. 199.
18. eFrguson, G., McCrindle, R., McAlees, A.J., and
Parvez, M.T., Acta Cryst., 1982, vol. 38, p. 2679.
19. Pindur, U. and Keilhofer, D., Lieb. Ann., 1993, p. 947.
20. hSul’ts, E.E., Shakirov, M.M., Tolstikov, G.A.,
Kalinin, V.N., and Shmidkhammer, G., Zh. Org. Khim.,
2005, vol. 41, p. 1155.
ACKNOWLEDGMENTS
The study was carried out under the financial support
of the Russian Foundation for Basic Research (grants
nos. 11-03-00242, 12-03-00535).
21. teSvens, W.C., Jones, R.M., Subramanian, G.,
Metzger, T.G., Terguson, D.M., and Portoghese, P.S.,
J. Med. Chem., 2000, vol. 43, p. 2759.
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 48 No. 11 2012