638
L. Zhang et al. / European Journal of Medicinal Chemistry 58 (2012) 624e639
[2] T. Barf, Intervention of hepatic glucose production. small molecule regulators
[34] M. Nomura, S. Kinoshita, H. Satoh, T. Maeda, K. Murakami, M. Tsunoda,
H. Miyacvhi, K. Awano, (3-Substituted benzyl)thiazolidine-2,4-diones as
structurally new antihyperglycemic agents, Bioorg. Med. Chem. Lett. 9 (1999)
533e538.
[35] H. Zhang, D.E. Ryono, P. Devasthale, W. Wang, K. O’Malley, D. Farrelly, L. Gu,
T. Harrity, M. Cap, C. Chu, K. Locke, L. Zhang, J. Lippy, L. Kunselman, N. Morgan,
N. Flynn, L. Moore, V. Hosagrahara, L. Zhang, P. Kadiyala, C. Xu, A.M. Doweyko,
A. Bell, C. Chang, J. Muckelbauer, R. Zahler, N. Hariharan, P.T.W. Cheng, Design,
synthesis and structureeactivity relationships of azole acids as novel, potent
dual PPAR alpha/gamma agonists, Bioorg. Med. Chem. Lett. 19 (2009)
1451e1456.
[36] P.S. Humphries, S. Bailey, J.V. Almaden, S.J. Barnum, T.J. Carlson, L.C. Christie,
Q.T. Do, J.D. Fraser, M. Hess, J. Kellum, Y.H. Kim, G.A. McClellan, K.M. Ogilvie,
B.H. Simmons, D. Skalitzky, S. Sun, D. Wilhite, L.R. Zehnder, Pyridine-3-
propanoic acids: discovery of dual PPARalpha/gamma agonists as antidia-
betic agents, Bioorg. Med. Chem. Lett. 16 (2006) 6120e6123.
of potential targets for type 2 diabetes therapy, Mini-Rev. Med. Chem. 4
(2004) 897e908.
[3] R. Kurukulasuriya, J.T. Link, D.J. Madar, Z. Pei, J.J. Rohde, S.J. Richards,
A.J. Souers, B.G. Szczepankiewicz, Prospects for pharmacologic inhibition of
hepatic glucose production, Curr. Med. Chem. 10 (2003) 99e121.
[4] J.G. McCormack, N. Westergaard, M. Kristiansen, C.L. Brand, J. Lau, Pharma-
cological approaches to inhibit endogenous glucose production as a means of
anti-diabetic therapy, Curr. Pharm. Des. 7 (2001) 1451e1474.
[5] E.J. Barrett, Z. Liu, Hepatic glucose metabolism and insulin resistance in
NIDDM and obesity, Baillieres Clin. Endocrinol. Metab. 7 (1993) 875e901.
[6] A. Consoli, Role of liver in pathophysiology of NIDDM, Diabetes Care 15 (1992)
430e441.
[7] B.R. Landau, J. Wahren, V. Chandramouli, W.C. Schumann, K. Ekberg,
S.C. Kalhan, Contributions of gluconeogenesis to glucose production in the
fasted state, J. Clin. Invest. 98 (1996) 378e385.
[8] W.A. Loughlin, Recent advances in the allosteric inhibition of glycogen
phosphorylase, Mini-Rev. Med. Chem. (2010) 1139e1155.
[37] K. Liu, L. Xu, J.P. Berger, K.L. MacNaul, G. Zhou, T.W. Doebber, M.J. Forrest,
D.E. Moller, A.B. Jones, Discovery of a novel series of peroxisome proliferator-
activated receptor alpha/gamma dual agonists for the treatment of type 2
diabetes and dyslipidemia, J. Med. Chem. 48 (2005) 2262e2265.
[38] P.V. Devasthale, S. Chen, Y. Jeon, F. Qu, C. Shao, W. Wang, H. Zhang, D. Farrelly,
R. Golla, G. Grover, T. Harrity, Z. Ma, L. Moore, J. Ren, R. Seethala, L. Cheng,
P. Sleph, W. Sun, A. Tieman, J.R. Wetterau, A. Doweyko, G. Chandrasena,
S.Y. Chang, W.G. Humphreys, V.G. Sasseville, S.A. Biller, D.E. Ryono, F. Selan,
N. Hariharan, P.T.W. Cheng, Design and synthesis of N-[(4-methoxyphenoxy)
carbonyl]-N-[[4-[2-(5-methyl-2-phenyl-4-oxazolyl)ethoxy]phenyl]methyl]
[9] L. Somsak, K. Czifrak, M. Toth, E. Bokor, E.D. Chrysina, K.-M. Alexacou,
J.M. Hayes, C. Tiraidis, E. Lazoura, D.D. Leonidas, S.E. Zographos,
N.G. Oikonomakos, New inhibitors of glycogen phosphorylase as potential
antidiabetic agents, Curr. Med. Chem. 15 (2008) 2933e2983.
[10] N.G. Oikonomakos, L. Somsák, Advances in glycogen phosphorylase inhibitor
design, Curr. Opin. Investig. Drugs 9 (2008) 379e395.
[11] B.R. Henke, S.M. Sparks, Glycogen phosphorylase inhibitors, Mini-Rev. Med.
Chem. 6 (2006) 845e857.
[12] D.J. Baker, P.L. Greenhaff, J.A. Timmons, Glycogen phosphorylase inhibition as
a therapeutic target: a review of the recent patent literature, Expert Opin.
Ther. Patents 16 (2006) 459e466.
glycine [Muraglitazar/BMS-298585],
activated receptor alpha/gamma dual agonist with efficacious glucose and
lipid-lowering activities, J. Med. Chem. 48 (2005) 2248e2250.
a
novel peroxisome proliferator-
[13] N.G. Oikonomakos, Glycogen phosphorylase as a molecular target for type 2
diabetes therapy, Curr. Protein Pept. Sci. 3 (2002) 561e586.
[14] P. Manojit, Recent advances in glucokinase activators for the treatment of type
2 diabetes, Drug Discov. Today 14 (2009) 784e792.
[39] P.S. Humphries, J.V. Almaden, S.J. Barnum, T.J. Carlson, Q.T. Do, J.D. Fraser,
M. Hess, Y.H. Kim, K.M. Ogilvie, S. Sun, Pyridine-2-propanoic acids: discovery
of dual PPARalpha/gamma agonists as antidiabetic agents, Bioorg. Med. Chem.
Lett. 16 (2006) 6116e6119.
[15] J. Grimsby, S.J. Berthel, R. Sarabu, Glucokinase activators for the potential
treatment of type 2 diabetes, Curr. Top. Med. Chem. 8 (2008) 1524e1532.
[16] R. Sarabu, S.J. Berthel, R.F. Kester, J.W. Tilley, Novel glucokinase activa-
tors: a patent review (2008e2010), Expert Opin. Ther. Patents 21 (2011)
13e33.
[17] P. Manojit, Medicinal chemistry approaches for glucokinase activation to treat
type 2 diabetes, Curr. Med. Chem. 16 (2009) 3858e3874.
[18] M.C.T. Fyfe, M.J. Procter, Glucokinase activators as potential antidiabetic
agents possessing superior glucose-lowering efficacy, Drugs Fut 34 (2009)
641e653.
[19] R. Sarabu, S.J. Berthel, R.F. Kester, J.W. Tilley, Glucokinase activators as new
type 2 diabetes therapeutic agents, Expert Opin. Ther. Patents 18 (2008)
759e768.
[20] T.O. Johnson, P.S. Humphries, Glucokinase activators for the treatment of type
2 diabetes, Annu. Rep. Med. Chem. 41 (2006) 141e154.
[40] R.C. Desai, W. Han, E.J. Metzger, J.P. Bergman, D.F. Gratale, K.L. MacNaul,
J.P. Berger, T.W. Doebber, K. Leung, D.E. Moller, J.V. Heck, S.P. Sahoo, 5-Aryl
thiazolidine-2,4-diones: discovery of PPAR dual alpha/gamma agonists as
antidiabetic agents, Bioorg. Med. Chem. Lett. 13 (2003) 2795e2798.
[41] L. Zhang, H. Li, Q. Zhu, J. Liu, L. Chen, Y. Leng, H. Jiang, H. Liu, Benzamide
derivatives as dual-action hypoglycemic agents that inhibit glycogen phos-
phorylase and activate glucokinase, Bioorg. Med. Chem. 17 (2009)
7301e7312.
[42] L. Chen, H. Li, J. Liu, L. Zhang, H. Liu, H. Jiang, Discovering benzamide deriv-
atives as glycogen phosphorylase inhibitors and their binding site at the
enzyme, Bioorg. Med. Chem. 15 (2007) 6763e6774.
[43] V.L. Rath, M. Ammirati, D.E. Danley, J.L. Ekstrom, E.M. Gibbs, T.R. Hynes,
A.M. Mathiowetz, R.K. McPherson, T.V. Olson, J.L. Treadway, D.J. Hoover,
Human liver glycogen phosphorylase inhibitors bind at a new allosteric site,
Chem. Biol. 7 (2000) 677e682.
[21] K.R. Guertin, J. Grimsby, Small molecule glucokinase activators as glucose
lowering agents: a new paradigm for diabetes therapy, Curr. Med. Chem. 13
(2006) 1839e1843.
[22] R. Sarabu, J. Grimsby, Targeting glucokinase activation for the treatment of
type 2 diabetes e a status review, Curr. Opin. Drug Discov. Devel. 8 (2005)
631e637.
[44] G.R. Bebernitz, V. Beaulieu, B.A. Dale, R. Deacon, A. Duttaroy, J. Gao,
M.S. Grondine, R.C. Gupta, M. Kakmak, M. Kavana, L.C. Kirman, J. Liang,
W.M. Maniara, S. Munshi, S.S. Nadkarni, H.F. Schuster, T. Stams, I. St. Denny,
P.M. Taslimi, B. Vash, S.L. Caplan, Investigation of functionally liver selective
glucokinase activators for the treatment of type 2 diabetes, J. Med. Chem. 52
(2009) 6142e6152.
[23] F.M. Matschinsky, Assessing the potential of glucokinase activators in diabetes
therapy, Nat. Rev. Drug Discov. 8 (2009) 399e416.
[45] V. Kumari, C. Li, Comparative docking assessment of glucokinase interactions
with its allosteric activators, Curr. Chem. Genom. 2 (2008) 76e89.
[46] K. Onda, T. Suzuki, R. Shiraki, Y. Yonetoku, K. Negoro, K. Momose,
N. Katayama, M. Orita, T. Yamaguchi, M. Ohta, S. Tsukamoto, Synthesis of
5-chloro-N-aryl-1H-indole-2-carboxamide derivatives as inhibitors of
human liver glycogen phosphorylase a, Bioorg. Med. Chem. 16 (2008)
5452e5464.
[24] J. Grimsby, R. Sarabu, W.L. Corbett, N.E. Haynes, F.T. Bizzarro, J.W. Coffey,
K.R. Guertin, D.W. Hilliard, R.F. Kester, P.E. Mahaney, L. Marcus, L.D. Qi,
C.L. Spence, J. Tengi, M.A. Magnuson, C.A. Chu, M.T. Dvorozniak,
F.M. Matschinsky, J.F. Grippo, Allosteric activators of glucokinase: potential
role in diabetes therapy, Science 301 (2003) 370e373.
[25] T. Ferre, E. Riu, F. Bosch, A. Valera, Evidence from transgenic mice that
glucokinase is rate limiting for glucose utilization in the liver, FASEB J. 10
(1996) 1213e1218.
[26] R. Morphy, Z. Rankovic, Designing multiple ligands e medicinal chemistry
strategies and challenges, Curr. Pharm. Des. 15 (2009) 587e600.
[27] A.L. Hopkins, Network pharmacology: the next paradigm in drug discovery,
Nat. Chem. Biol. 4 (2008) 682e690.
[28] T. Korcsmáros, M.S. Szalay, C. Böde, I.A. Kovács, P. Csermely, How to design
multi-target drugs: target search options in cellular networks, Expert Opin.
Drug Discov. 2 (2007) 1e10.
[29] R. Morphy, Z. Rankovic, Fragments, network biology and designing multiple
ligands, Drug Discov. Today 12 (2007) 156e160.
[47] K.G. Rosauer, A.K. Ogawa, C.A. Willoughby, K.P. Ellsworth, W.M. Geissler,
R.W. Myers, Q. Deng, K.T. Chapman, G. Harris, D.E. Moller, Novel 3,4-
dihydroquinolin-2(1H)-one inhibitors of human glycogen phosphorylase a,
Bioorg. Med. Chem. Lett. 13 (2003) 4385e4388.
[48] P.R.O. Whittamore, M.S. Addie, S.N.L. Bennett, A.M. Birch, M. Butters,
L. Godfrey, P.W. Kenny, A.D. Morley, P.M. Murray, N.G. Oikonomakos,
L.R. Otterbein, A.D. Pannifer, J.S. Parker, K. Readman, P.S. Siedlecki,
P. Schofield, A. Stocker, M.J. Taylor, L.A. Townsend, D.P. Whalley,
J. Whitehouse, Novel thienopyrrole glycogen phosphorylase inhibitors:
synthesis, in vitro SAR and crystallographic studies, Bioorg. Med. Chem. Lett.
16 (2006) 5567e5571.
[49] K.R. Guertin, PCT Int. Appl. WO2002048106, 2002.
[30] P. Csermely, V. Agoston, S. Pongor, The efficiency of multi-target drugs: the
network approach might help drug design, Trends Pharmacol. Sci. 26 (2005)
178e182.
[31] R. Morphy, Z. Rankovic, Designed multiple ligands. An emerging drug
discovery paradigm, J. Med. Chem. 48 (2005) 6523e6543.
[50] S.X. Cao, J. Feng, S.L. Gwaltney, D.J. Hosfield, R.J. Skene, J.A. Stafford, M. Tang,
U.S. Patent US20070281942, 2007.
[51] M. Futamura, H. Hosaka, A. Kadotani, H. Shimazaki, K. Sasaki, S. Ohyama,
T. Nishimura, J. Eiki, Y. Nagata, An allosteric activator of glucokinase impairs
the interaction of glucokinase and glucokinase regulatory protein and regu-
lates glucose metabolism, J. Biol. Chem. 281 (2006) 37668e37674.
[52] K.J. Brocklehurst, V.A. Payne, R.A. Davies, D. Carroll, H.L. Vertigan,
H.J. Wightman, S. Aiston, I.D. Waddell, B. Leighton, M.P. Coghlan, L. Agius,
Stimulation of hepatocyte glucose metabolism by novel small molecule
glucokinase activators, Diabetes 53 (2004) 535e541.
[32] R. Morphy, C. Kay, Z. Rankovic, From magic bullets to designed multiple
ligands, Drug Discov. Today 9 (2004) 641e651.
[33] K. Murakami, K. Tobe, T. Ide, T. Mochizuki, M. Ohashi, Y. Akanuma, Y. Yazaki,
T. Kadowaki, A novel insulin sensitizer acts as a coligand for peroxisome
proliferator-activated receptor-alpha (PPAR-alpha) and PPAR-gamma: effect
of PPAR-alpha activation on abnormal lipid metabolism in liver of Zucker fatty
rats, Diabetes 47 (1998) 1841e1847.
[53] A.M. Efanov, D.G. Barrett, M.B. Brenner, S.L. Briggs, A. Delaunois,
J.D. Durbin, U. Giese, H. Guo, M. Radloff, G.S. Gil, S. Sewing, Y. Wang,