TTF–p–TCAQ System
FULL PAPER
the TCAQ unit. As a complement, the electronic excited
state was probed by means of femtosecond transient-absorp-
tion spectroscopy. To this end, 11 reveals in the excited state
ultrafast charge separation (0.2 ps)—that is, the formation of
the radical cation of exTTF and the radical anion of
TCAQ—and fast charge-recombination ((1.0ꢀ0.2) ps) pro-
+
C
Cꢂ
radical ion-pair state is
cesses. The exTTF –TCAQ
formed either through a localized exTTF excited state or ex-
cited CT state.
Acknowledgements
Financial support from the Deutsche Forschungsgemeinschaft (SFB 583),
Cluster of Excellence (EAM), the Office of Basic Energy Sciences of the
U.S., the MICINN of Spain (project nos. CTQ2008-00795/BQU,
CTQ2009-08790, CTQ2009-07791, and Consolider-Ingenio CSD2007-
00010 on Molecular Nanoscience), the CM (project nos. P-PPQ-000225-
0505 and S2009/PPQ-1634), and the EU (FUNMOL FP7-212942-1) is
greatly appreciated. J.S. is indebted to the MEC for a research grant.
[1] a) Special issue on “Molecular Conductors” (Ed.: P. Batail), Chem.
Rev. 2004, 104, 4887–5782; b) For a review on magnetic materials,
J. R. Ferrar, R. J. Thorn, K. D. Carlson, U. Geiser, H. H. Wang,
A. M. Kini, M.-H. Whangbo, Organic Superconductors (including
Fullerenes), Prentice Hall, Englewood Cliffs, 1992; d) M. R. Bryce,
Chem. Soc. Rev. 1991, 20, 355–390; e) P. Day, M. Kurmoo, J. Mater.
[2] For general reviews, see: a) J. Garꢀn, N. Martꢀn in TTF Chemistry.
Fundamentals and Applications of Tetrathiafulvalene, (Eds.: J.
Yamada, T. Sugimoto), Springer, 2004; b) J. L. Segura, N. Martꢀn,
[4] Special issue on “Organic Electronics and Optoelectronics” (Eds.:
S. R. Forrest, M. E. Thompson), Chem. Rev. 2007, 107, 923–1386.
[5] a) Special issue on “Organic Photovoltaics” (Eds.: J. L. Brꢈdas, J. R.
Durrant), Acc. Chem. Res. 2009, 42, 1689–1857; b) N. Martꢀn, L.
Sꢁnchez, M. A. Herranz, B. Illescas, D. M. Guldi, Acc. Chem. Res.
2007, 40, 1015–1024; c) J. L. Segura, N. Martꢀn, D. M. Guldi, Chem.
Soc. Rev. 2005, 34, 31–47; d) J. L. Delgado, P.-A. Bouit, S. Filippone,
Photoinduced Electron Transfer, (Eds.: M. A. Fox, M. Chanon),
Elsevier, Amsterdam, 1988.
[6] a) D. M. Guldi, B. M. Illescas, C. M. Atienza, M. Wielopolski, N.
Wasielewski, M. A. Ratner, Top. Curr. Chem. 2005, 257, 103–134;
c) D. K. James, J. M. Tour, Top. Curr. Chem. 2005, 257, 33–62.
[7] S. Barlow, S. R. Marder in Functional Organic Materials, (Eds.:
T. J. J. Mꢄller, U. H. F. Bunz), Wiley-VCH, Weinheim, 2007,
pp. 393–437.
Figure 7. Top: differential absorption spectra (visible and near-infrared)
obtained upon femtosecond flash photolysis (387 nm) of 11 in THF
under argon with a time delay of 1.5 ps. Bottom: time absorption profiles
of spectra shown above at 630 nm (filled circles), and 1060 nm (empty
circles) monitoring the charge separation and charge recombination.
localization across this p-conjugated unit therefore enables
strong interactions between the donor and acceptor parts of
the molecule.
Conclusion
In summary, we have carried out the synthesis of a new
building block for exTTFs, namely, sulfonylmethyl-exTTFs
(5), suitably functionalized for Julia–Kocienski olefination
reactions with different aldehydes. The reaction proceeds
with an excellent stereoselectivity of the resulting trans
olefin. As a proof-of-principle, the reaction of 5b with the
formyl-containing TCAQ afforded for the first time a fully
conjugated TTF–p–TCAQ-type system (11). Theoretical cal-
culations at the B3LYP/6-31G** level show a highly distort-
ed molecule 11 at the exTTF and TCAQ moieties with an
almost planar central stilbene unit. Importantly, the central
vinyl spacer guarantees efficient connection of the electroac-
tive donor and acceptor in the electronic ground state, and
in turn gives rise to the formation of charge-transfer (CT)
bands—both in absorption and emission—in the visible
region of the spectrum. These experimental findings were
nicely supported by TD-DFT calculations, which predict
four CT states above 500 nm that result from electronic ex-
citations from the HOMO and HOMOꢂ1, localized on the
exTTF moiety, to the LUMO and LUMO+1, localized on
[9] a) H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King,
Blanchard-Desce, I. Ledoux, J.-M. Lehn, J. MalthÞte, J. Zyss, J.
[10] a) R. Andreu, A. I. de Lucas, J. Garꢀn, N. Martꢀn, J. Orduna, L.
cas, N. Martꢀn, L. Sꢁnchez, C. Seoane, R. Andreu, J. Garꢀn, J.
Orduna, R. Alcalꢁ , B. Villacampa, Tetrahedron 1998, 54, 4655–
4662; c) J. Garꢀn, J. Orduna, J. I. Rupꢈrez, R. Alcalꢁ, B. Villacampa,
C. Sꢁnchez, N. Martꢀn, J. L. Segura, M. Gonzꢁlez, Tetrahedron Lett.
1998, 39, 3577–3580; d) M. Gonzꢁlez, N. Martꢀn, J. L. Segura, J.
Chem. Eur. J. 2011, 17, 2957 – 2964
ꢅ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2963