Job/Unit: O20759
/KAP1
Date: 02-08-12 11:51:36
Pages: 6
H.-T. Yang, X.-Q. Sun et al.
FULL PAPER
cess, which also could be supported by the fact that no reac- generates 2. In path B, deprotonation of 10 generates carb-
tion was observed when C60 was treated with benzyl brom- anion 13, which attacks C60 to form 14 and subsequent in-
ide (Table 2, entry 15).
tramolecular SN reaction affords 2.
Conclusions
In conclusion, a wide variety of methano[60]fullerenes
linked with a single electron-withdrawing group were syn-
thesized conveniently through the one-step reaction of
active halides with C60 mediated by CuBr/PMDETA. A
possible reaction pathway, but not the ATR mechanism,
was proposed to explain the cyclopropanation of C60.
Supporting Information (see footnote on the first page of this arti-
cle): General methods; experimental procedures for the preparation
of methanofullerenes 2, 8, and 9; spectral data for products 2h, 2j,
1
8, and 9; H NMR and 13C NMR spectra of the products.
Acknowledgments
The authors are grateful for financial support from the National
Natural Science Foundation of China (Nos. 20902039) and the Pri-
ority Academic Program Development of Jiangsu Higher Educa-
tion Institutions.
Scheme 3. Mechanism investigation. Conditions: (a) Br2 (1 equiv.),
PMDETA (3 equiv.), ODCB, r.t., 1 h, 80%; (b) PMDETA
(3 equiv.), ODCB, r.t., 6 h, 50%; (c) tBuOK (2 equiv.), r.t., 30 min,
94%; (d) PMDETA (4 equiv.), CuBr (3 equiv.), and CuBr2
(1 equiv.), ODCB, 110 °C, 1 h, gave a mixture of 8 (61%) and 9
(20%); (e) tBuOK (3 equiv.), CuBr2 (6 equiv.), ODCB, 100 °C, 4 h,
82%; (f) CuBr2 (5 equiv.), ODCB, 100 °C, 3 h, 87%.
[1] a) F. Diederich, L. Isaacs, D. Philp, Chem. Soc. Rev. 1994, 23,
243–255; b) J.-F. Nierengarten, T. Habicher, R. Kessinger, F.
Cardullo, F. Diederich, V. Gramlich, J.-P. Gisselbrecht, C. Bou-
don, M. Gross, Helv. Chim. Acta 1997, 80, 2238–2276.
[2] a) S. H. Friedman, D. L. De Camp, R. P. Sijbesma, G. Srdanov,
F. Wudl, G. L. Kenyon, J. Am. Chem. Soc. 1993, 115, 6506–
6509; b) R. Sijbesma, G. Srdanov, F. Wudl, J. A. Castoro, C.
Wilkins, S. H. Friedman, D. L. De Camp, G. L. Kenyon, J. Am.
Chem. Soc. 1993, 115, 6510–6512.
[3] a) C. Bingel, Chem. Ber. 1993, 126, 1957–1959; b) A. Hirsch,
I. Lamparth, H. R. Karfunkel, Angew. Chem. 1994, 106, 453;
Angew. Chem. Int. Ed. Engl. 1994, 33, 437–438; c) R. Pellicciari,
B. Natalini, L. Amori, M. Marinozzi, R. Seraglia, Synlett 2000,
1816–1818.
The exact reaction mechanism for the formation of 2 is
currently unknown. An alternative plausible reaction path-
way is proposed in Scheme 4. Interaction of active halide 1
with CuBr and PMDETA generates CuIII intermediate 10.
In path A, elimination of HBr from 10 results in the forma-
tion of carbenoid 11, which undergoes [2+2] cycloaddition
with C60 to generate 12. Subsequent reductive elimination
[4] a) A. Skiebe, A. Hirsch, J. Chem. Soc., Chem. Commun. 1994,
335–336; b) A. B. Smith III, R. M. Strongin, L. Brard, G. T.
Furst, W. J. Romanow, K. G. Owens, R. J. Goldschmidt, R. C.
King, J. Am. Chem. Soc. 1995, 117, 5492–5502; c) R. González,
J. C. Hummelen, F. Wudl, J. Org. Chem. 1995, 60, 2618–2620;
d) M. H. Hall, H. Lu, P. B. Shevlin, J. Am. Chem. Soc. 2001,
123, 1349–1354.
[5] a) H. J. Bestmann, D. Hadawi, T. Roder, C. Moll, Tetrahedron
Lett. 1994, 35, 9017–9020; b) Y. Wang, J. Cao, D. I. Schuster,
S. R. Wilson, Tetrahedron Lett. 1995, 36, 6843–6846; c) M.
Hamada, T. Hino, K. Kinbara, K. Saigo, Tetrahedron Lett.
2001, 42, 5069–5071.
[6] T. Hino, K. Kinbara, K. Saigo, Tetrahedron Lett. 2001, 42,
5065–5067.
[7] a) H. Tokuyama, M. Nakamura, E. Nakamura, Tetrahedron
Lett. 1993, 34, 7429–7432; b) H. Nikawa, T. Nakahodo, T. Tsu-
chiya, T. Wakahara, G. M. A. Rahman, T. Akasaka, Y. Maeda,
M. T. H. Liu, A. Meguro, S. Kyushin, H. Matsumoto, N. Mi-
zorogi, S. Nagase, Angew. Chem. 2005, 117, 7739; Angew.
Chem. Int. Ed. 2005, 44, 7567–7570; c) W. W. Win, M. Kao, M.
Eiermann, J. J. McNamara, F. Wudl, D. L. Pole, K. Kassam, J.
Warkentin, J. Org. Chem. 1994, 59, 5871–5876; d) M. O. Ishit-
suka, Y. Niino, T. Wakahara, T. Akasaka, M. T. H. Liu, K.
Kobayashi, S. Nagase, Tetrahedron Lett. 2004, 45, 6321–6322.
[8] G.-W. Wang, F.-B. Li, Org. Biomol. Chem. 2005, 3, 794–797.
[9] a) G.-W. Wang, F.-B. Li, J. Nanosci. Nanotechnol. 2007, 7,
1162–1175; b) G.-W. Wang, C.-Z. Wang, J.-P. Zou, J. Org.
Scheme 4. Plausible mechanism for the formation of 2.
4
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0