Dalton Transactions
Page 4 of 7
(Table 1)). Structural and spectroscopic characteristics of the
complex model 3 are in good agreement with the data for the
grafted Ta analog and thus confirm the validity of such molecular
models in structural studies of analogous, grafted systems.
40
In summary, four new tantalasilsesquioxane complexes have
been synthesized and characterized. To the best of our
knowledge, the crystal structures of these compounds are the first
for polyhedral oligosilsesquioxane complexes with a Ta center.
Complexes 2ꢀ4 display a fourꢀlegged piano stool geometry
45 around the tantalum center whereas 5 possesses a threeꢀlegged
piano stool arrangement. These complexes are relevant structural
molecular models for Cp*Ta fragments grafted onto a silica
surface. Further modifications to the structures of these
tantalasilsesquioxane complexes are currently being investigated.
50
Fig. 5 Molecular structure of cation 5(CH3CN) displaying thermal
ellipsoids at the 50% probability level. Hꢀatoms, iꢀbutyl groups,
[B(C6F5)4]ꢀ and a CH3CN molecule have been omitted for clarity.
Acknowledgments
5
Table 2 Selected bond lengths [Å] and angles [°] for 5(CH3CN)
This work was supported by the Director, Office of Science,
Office of Basic Energy Sciences of the US Department of Energy
under contract No. DEꢀAC02ꢀ05CH11231. The authors are
55 grateful to Dr. Frank J. Feher for helpful discussions.
O(1)ꢀTa(1)
O(2)ꢀTa(1)
O(3)ꢀTa(1)
Ta(1)ꢀN(1)
1.897(8)
1.917(7)
1.879(7)
2.255(9)
O(13)ꢀSi(6)ꢀO(5)
O(13)ꢀSi(6)ꢀO(12)
O(5)ꢀSi(6)ꢀO(12)
O(3)ꢀTa(1)ꢀO(2)
O(3)ꢀTa(1)ꢀO(1)
O(1)ꢀTa(1)ꢀO(2)
O(3)ꢀTa(1)ꢀN(1)
O(1)ꢀTa(1)ꢀN(1)
O(2)ꢀTa(1)ꢀN(1)
Si(1)ꢀO(1)ꢀTa(1)
Si(4)ꢀO(2)ꢀTa(1)
Si(8)ꢀO(3)ꢀTa(1)
110.0(4)
108.6(4)
107.9(4)
123.5(3)
90.4(3)
90.4(3)
76.2(3)
Notes and references
a Department of Chemistry, University of California, Berkeley, CA 94720-
151.5(3)
76.9(3)
161.9(4)
141.0(4)
146.1(4)
b Chemical Sciences Division,Lawrence Berkeley National Laboratory, 1
60 Cyclotron Road, Berkeley, CA 94720, USA.
†Electronic Supplementary Information (ESI) available: General
1
experimental details, synthetic procedures for compounds 2ꢀ5, H NMR
of 5 (Table S1) and crystallographic details (Table S1ꢀS5). CCDC
897182ꢀ897186. For ESI and crystallographic data in CIF or other
65 electronic format see DOI: 10.1039/b000000x/
Notably, as for 2ꢀ4, the cis OꢀTaꢀX (X = N(CH3CN)) angles
are acute (76.3(3) and 76.9(3)°) whereas the two cis OꢀTaꢀO
angles are close to 90°. For the trans OꢀTaꢀX (X = O, N) angles,
10 as expected, a behavior similar to that for 2ꢀ4 was observed with
a OꢀTaꢀN angle larger than the OꢀTaꢀO angle (151.5(3) vs.
123.5(3)°). Removal of the solvent under vacuum results in loss
1
a) V. Vidal, A. Théolier, J. ThivolleꢀCazat and J. M. Basset, Science
1997, 276, 99; b) S. Soignier, M. Taoufik, E. Le Roux, G. Saggio, C.
Dablemont, A. Baudouin, F. Lefebvre, A. de Mallmann, J. Thivolleꢀ
Cazat, J. M. Basset, G. Sunley and B. M. Maunders, Organometallics
2006, 25, 1569; c) O. Maury, L. Lefort, V. Vidal, J. ThivolleꢀCazat
and J. M. Basset, Angew. Chem. Int. Ed. 1999, 38, 1952; d) E. Le
Roux, M. Chabanas, A. Baudouin, A. de Mallmann, C. Copéret, E.
A. Quadrelli, J. ThivolleꢀCazat, J. M. Basset, W. Lukens, A. Lesage,
L. Emsley and G. J. Sunley, J. Am. Chem. Soc. 2004, 126, 13391; e)
J. M. Basset, C. Copéret, D. Soulivong, M. Taoufik and J. Thivolleꢀ
Cazat, Acc. Chem. Res. 2010, 43, 323 and references herein.
a) D. Meunier, A. Piechaczyk, A. de Mallmann and J.M. Basset,
Angew. Chem. Int. Ed. 1999, 38, 3540; b) D. Meunier, A. de
Mallmann and J. M. Basset, Top. Catal. 2003, 23, 183.
a) R. L. Brutchey, C. G. Lugmair, L. O. Schebaum and T. D. Tilley,
J. Catal. 2005, 229, 72; b) D. A. Ruddy and T. D. Tilley, Chem.
Commun. 2007, 3350; c) D. A. Ruddy and T. D. Tilley, J. Am. Chem.
Soc. 2008, 130, 11088; d) P. J. Cordeiro and T. D. Tilley, Langmuir
2011, 27, 6295.
a) C. Floriani and R. FlorianiꢀMoro, Adv. Organomet. Chem. 2001,
47, 167; b) C. Floriani, Chem. Eur. J. 1999, 5, 19.
a) R. Murugavel, A. Voigt, M. G. Walawalkar and H. W. Roesky,
Chem. Rev. 1996, 96, 2205; b) B. Marciniec and H. Maciejewski,
Coord. Chem. Rev. 2001, 223, 301.
1
70
75
80
85
90
95
of the coordinated acetonitrile ligand, as indicated by H NMR
spectroscopy (benzeneꢀd6), and elemental analysis. Thus, the
15 acetonitrile appears to be very weakly bound and due to its high
lability, further characterization of 5(CH3CN) was precluded.
To evaluate the validity of complexes 2ꢀ5 as molecular models
for silicaꢀbound tantalum centers with a Cp* ligand, a comparison
was made between 3 and a similar, previously reported surfaceꢀ
20 bound Ta species. Basset and coꢀworkers investigated the
grafting of Cp*TaMe4 on silica partially dehydroxylated at 700
°C, and determined the activity of the grafted complex toward
alkane metathesis.1d While for complex 3, the Ta is coordinated
by one Cp*, one methyl and three siloxide ligands, the grafted
2
3
25 material
possesses
a
Cp*TaMe3(OSiꢀsilica)
structure.
Interestingly, the 13C NMR spectrum of TaCp*Me4 displays a
signal at 74 ppm assigned to the methyl ligands whereas both
complex 3 and the grafted system display more upfield signals at
53.6 and 58 ppm, respectively. Comparison of the bond distances
30 for 3 and the grafted system is also informative. The EXAFS data
for the silicaꢀsupported Ta species indicates a TaꢀO(Si) distance
of 1.931 Å, a TaꢀC(Me) distance of 2.142 Å and 2.456 Å for the
TaꢀC(Cp*) distances. For 3, the bond distances are in the same
range (1.932(2)ꢀ1.969(2) Å for TaꢀO(Si), 2.275(2) Å for the Taꢀ
35 C(Me) and 2.406(3)ꢀ2.490(3) Å for the TaꢀC(Cp*) distances
4
5
6
7
a) F. J. Feher, D. A. Newman and J. F. Walzer, J. Am. Chem. Soc.
1989, 111, 1741; b) F. J. Feher and T. A. Budzichowski, Polyhedron
1995, 14, 3239.
a) H. C. L. Abbenhuis, Chem. Eur. J. 2000, 6, 25; b) V.
Chandrasekhar, R. Boomishankar and S. Nagendran, Chem. Rev.
2004, 104, 5847; c) D. B. Cordes, P. D. Lickiss and F. Rataboul,
Chem. Rev. 2010, 110, 2081.
4
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]