80
B. Malo-Forest et al. / Journal of Fluorine Chemistry 145 (2013) 77–80
added and the layers were separated. The aqueous layer was
extracted with EtOAc (3ꢁ). The combined organic extracts were
washed with brine, dried over anhydrous MgSO4 and concentrated.
The crude material was purified by flash chromatography to give
the desired product.
2.80 (t, 2H, J = 6.0 Hz) 2.53 (m, 4H), 1.63 (m, 4H), 1.46 (m, 2H); 13
NMR (100 MHz, CDCl3) 159.4, 154.7 (d, JC–F = 249 Hz), 131.8 (d,
C
d
JC–F = 3 Hz), 131.0, 129.3, 129.1, 129.0, 128.3, 128.1 (d, JC–F = 5 Hz),
159.4, 115.0, 114.3, 66.1, 58.0, 55.2, 26.0, 24.3; 19F NMR (376 MHz,
CDCl3)
d
ꢀ84.6 (s, 1F); HRMS-ESI calcd for C21H23BrFNO [M+H]+
407.1033, found 407.1033.
3.1.1. (Z)-1-(1-bromo-2-fluoro-2-phenylvinyl)-4-methoxybenzene
(6a)
Acknowledgments
Following the general procedure on a 0.375 mmol scale of 5a,
the desired product (69 mg, 60%, Z/E > 95/5) was isolated as a
yellow oil by flash chromatography using 1% Et2O/petroleum
ether. The spectroscopic data were in agreement with the
literature [1].
This work was supported by the Canada Research Chair
Program, the Natural Sciences and Engineering Research Council
of Canada, the Canada Foundation for Innovation, the Fonds de
recherche sur la nature et les technologies (FQRNT), FQRNT Centre
in Green Chemistry and Catalysis, FQRNT Research Network on
Protein Function, Structure and Engineering (PROTEO) and the
3.1.2. (Z)-2-(4-(1-bromo-2-fluoro-2-phenylvinyl)phenoxy)ethanol
(6b)
Following the general procedure on a 0.135 mmol scale of 5b,
the desired product (38 mg, 84%, Z/E = 85/15) was isolated as white
crystals by flash chromatography using 15% EtOAc/hexanes. IR
´
Universite Laval.
References
(neat)
913, 694 cmꢀ1; 1H NMR (300 MHz, CDCl3)
7.22 (m, 3H), 6.79 (m, 4H), 4.03 (m, 4H), 3.94 (m, 4H), 2.12 (s, 1H);
13C NMR (75 MHz, CDCl3)
159.0, 154.8 (d, JC–F = 250 Hz), 131.9 (d,
JC–F = 3 Hz), 129.5, 128.4, 128.1 (d, JC–F = 5 Hz), 114.8, 114.2, 113.3,
n
= 3375, 2933, 2875, 1604, 1507, 1488, 1289, 1247, 1066,
[1] G. Landelle, P.A. Champagne, X. Barbeau, J.-F. Paquin, Organic Letters 11 (2009)
d
7.34 (d, 2H, J = 8.8 Hz),
681–684.
[2] For other synthetic approaches to monofluoroalkenes developed in our laboratory,
see:
d
(a) G. Landelle, M.-O. Turcotte-Savard, J. Marterer, P.A. Champagne, J.-F. Paquin,
Organic Letters 11 (2009) 5406–5409;
104.2 (d, JC–F = 30 Hz), 69.4, 61.5; 19F NMR (282 MHz, CDCl3)
d
´
´
(b) X. Pigeon, M. Bergeron, F. Barabe, P. Dube, H.N. Frost, J.-F. Paquin, Angewandte
ꢀ85.3 (s, 1F); HRMS-ESI calcd for C16H15BrFO2 [M+H]+ 337.0236,
Chemie International Edition 49 (2010) 1123–1127;
(c) J.-F. Paquin, Synlett (2011) 289–293;
(d) G. Landelle, M.-O. Turcotte-Savard, L. Angers, J.-F. Paquin, Organic Letters 13
(2011) 1568–1571;
found 337.0234.
(e) M. Bergeron, T. Johnson, J.-F. Paquin, Angewandte Chemie International Edition
50 (2011) 11112–11116.
[3] G. Landelle, M. Bergeron, M.-O. Turcotte-Savard, J.-F. Paquin, Chemical Society
Reviews 40 (2011) 2867–2908.
3.1.3. (Z)-2-(4-(1-bromo-2-fluoro-2-phenylvinyl)phenoxy)-N,N-
dimethylethanamine (6c)
Following the general procedure on a 0.22 mmol scale of 5c, the
desired product (20.1 mg, 25%, Z/E > 95/5) was isolated as a yellow
oil by flash chromatography using 2% MeOH/CH2Cl2. IR (neat)
[4] For selected examples, see:
(a) M.C. Pirrung, H.J. Ha, C.P. Holmes, Journal of Organic Chemistry 54 (1989)
1543–1548;
(b) M.C. Pirrung, C.P. Holmes, D.M. Horowitz, D.S. Nunn, Journal of the American
Chemical Society 113 (1991) 1020–1025;
(c) M.C. Pirrung, J. Chen, E.G. Rowley, A.T. McPhail, Journal of the American
Chemical Society 115 (1993) 7103–7110;
(d) X. Li, S.M. Singh, V. Luu-The, J. Coˆte´, S. Laplante, F. Labrie, Bioorganic &
Medicinal Chemistry 4 (1996) 55–60;
n
= 2943, 2820, 2771, 1603, 1508, 1248, 1174, 1032, 695 cmꢀ1; 1H
7.26 (m, 5H), 7.20 (d, 2H, J = 4.2 Hz), 6.83
(d, 2H, J = 8.7 Hz), 4.05 (t, 2H, J = 5.6 Hz), 2.73 (t, 2H, J = 5.7 Hz), 2.33
(s, 6H); 13C NMR (75 MHz, CDCl3)
167.8, 158.6 (d, JC–F = 245 Hz),
NMR (400 MHz, CDCl3)
d
d
131.6 (d, JC–F = 3 Hz), 130.8, 129.9, 129.8, 129.4, 127.9 (d, JC–
F = 5 Hz), 114.8, 114.0, 65.1, 57.7, 50.3, 45.2, 29.7, 21.9; 19F NMR
(e) J.P. Burkhart, P.M. Weintraub, C.A. Gates, R.J. Resvick, R.J. Vaz, D. Friedrich, M.R.
Angelastro, P. Bey, N.P. Peet, Bioorganic & Medicinal Chemistry 10 (2002) 929–934;
(f) P.M. Weintraub, A.K. Holland, C.A. Gates, W.R. Moore, R.J. Resvick, P. Bey, N.P.
Peet, Bioorganic & Medicinal Chemistry 11 (2003) 427–431.
[5] For, selected examples, see:
(376 MHz, CDCl3)
d
ꢀ85.7 (s, 1F); HRMS-ESI calcd for C18H20BrFNO
[M+H]+ 364.0707, found 364.0713.
(a) R.J. Abraham, S.L.R. Ellison, P. Schonholzer, W.A. Thomas, Tetrahedron 42
(1986) 2101–2110;
3.1.4. (Z)-1-(2-(4-(1-bromo-2-fluoro-2-
(b) T. Allmendiger, P. Furet, E. Hungerbu¨ hler, Tetrahedron Letters 31 (1990) 7297–
7300;
(c) J.T. Welch, J. Lin, Tetrahedron 52 (1996) 291–304;
(d) P. Wipf, T.C. Henninger, S.J.J. Geib, Journal of Organic Chemistry 63 (1998)
6088–6089;
phenylvinyl)phenoxy)ethyl)pyrrolidine (6d)
Following the general procedure on a 0.16 mmol scale of 5d, the
desired product (13.5 mg, 35%, Z/E > 95/5) was isolated as a
yellow-orange oil by flash chromatography using 2% MeOH/
(e) C. Dugave, L. Demange, Chemical Reviews 103 (2003) 2475–2532;
(f) A. Niida, K. Tomita, M. Mizumoto, H. Tanigaki, T. Terada, S. Oishi, A. Otaka, K.-i.
Inui, N. Fujii, Organic Letters 8 (2006) 613–616;
(g) G. Dutheuil, S. Couve-Bonnaire, X. Pannecoucke, Angewandte Chemie Interna-
tional Edition 46 (2007) 1290–1292;
CH2Cl2. IR (neat)
693 cmꢀ1 1H NMR (300 MHz, CDCl3)
J = 8.6 Hz), 4.11 (t, 2H, J = 5.8 Hz), 2.92 (t, 2H, J = 5.7 Hz), 2.65 (m,
4H), 1.82 (m, 4H); 13C NMR (100 MHz, CDCl3)
174.6, 158.9, 154.8
(d, JC-F = 250 Hz), 131.9 (d, JC–F = 3 Hz), 129.5, 128.3, 128.1 (d, JC–
F = 5 Hz), 114.9, 114.4, 54.8, 34.4, 32.2, 25.2, 23.6, 22.9, 14.4; 19F
n
= 2924, 2851, 1603, 1508, 1249, 1227, 1174,
;
d
7.21 (m, 7H), 6.83 (d, 2H,
d
(h) S. Couve-Bonnaire, D. Cahard, X. Pannecoucke, Organic & Biomolecular Chem-
istry 5 (2007) 1151–1157;
(i) T. Taguchi, H. Yanai, in: I. Ojima (Ed.), Fluorine in Medicinal Chemistry and
Chemical Biology, Blackwell Publishing Inc., 2009, pp. 257–290.
[6] R.P. Fisher, H.P. On, J.T. Snow, G. Zweifel, Synthesis (1982) 127–129.
[7] R.B. Miller, G. McGarbey, Journal of Organic Chemistry 43 (1978) 4424–4431.
NMR (282 MHz, CDCl3)
C
d
ꢀ85.6 (s, 1F); HRMS-ESI calcd for
20H22BrFNO [M+H]+ 390.0863, found 390.0877.
´
´
[8] (a) M. Fournier, F. Fournier, J. Berthelot, Bulletin de la Societe Chimique de
Belgique 93 (1984) 157–158;
3.1.5. (Z)-1-(2-(4-(1-bromo-2-fluoro-2-
(b) J. Berthelot, M. Fournier, Canadian Journal of Chemistry 64 (1986) 603–607;
(c) J. Berthelot, C. Guette, M. Essayegh, P.L. Desbene, Journal of Synthetic Com-
munications 16 (1986) 1641–1645;
(d) J. Berthelot, Y. Benammar, B. Desmazieres, Canadian Journal of Chemistry 73
(1995) 1526–1530.
phenylvinyl)phenoxy)ethyl)piperidine (6e)
Following the general procedure on a 0.97 mmol scale of 5e, the
desired product (118 mg, 39%, Z/E = 88/12) was isolated as a brown
oil by flash chromatography using 2% MeOH/CH2Cl2. IR (neat)
[9] K. Alfonsi, J. Colberg, P.J. Dunn, T. Fevig, S. Jennings, T.A. Johnson, H.P. Kleine, C.
Knight, M.A. Nagy, D.A. Perry, M. Stefaniak, Journal of Fluorine Chemistry 10 (2008)
31–36.
n
= 2933, 1603, 1508, 1247, 1174, 693 cmꢀ1
;
1H NMR (400 MHz,
7.20 (m, 7H), 6.81 (d, 2H, J = 8.7 Hz, 4.11 (t, 2H, J = 5.9 Hz),
CDCl3)
d