Organometallics
Article
7.71 (d, 3J(H,H) = 9.0 Hz, 1H), 7.65 (d, 3J(H,H) = 8.2 Hz, 1H), 7.61 (d,
3J(H,H) = 6.7 Hz, 2H), 7.52 (d, 3J(H,H) = 7.1 Hz, 2H), 7.33 (d, 3J(H,H)
= 8.6 Hz, 1H), 7.29 (d, 3J(H,H) = 9.0 Hz, 1H), 7.21−6.95 (m, 21H),
6.83 (vt, 3J(H,H) = 6.7, 7.8 Hz, 1 H), 6.70 (s, 1H, aryl-H), 4.19 (s, 1H,
OH), 3.98 (d, 2J(H,H) = 13.3 Hz, 1H, CH2), 3.56 (d, 2J(H,H) = 13.3 Hz,
1H, CH2), 2.29 (s, 3H, CH3), 1.97 (s, 3H, CH3), 1.10 (s, 9H, C(CH3)3).
13C{1H} NMR (100 MHz, C6D6): δ 160.1, 155.1, 150.9, 142.3, 139.9,
136.9, 136.75, 136.72, 136.3, 135.2, 134.8, 133.7, 132.6, 132.3, 130.7,
129.6, 128.9, 128.8, 128.5, 128.1, 127.9, 127.7, 127.5, 127.0, 126.3, 126.0,
124.0, 123.4, 123.2, 121.6, 121.0, 120.5, 115.8 (aryl), 62.1 (CH2), 40.6
(NCH3), 30.3, 20.6, 18.8. Anal. Calcd for C63H57NO2Si2: C, 82.58; H,
6.27; N, 1.53. Found: C, 81.72; H, 6.33; N, 1.43.
1H NMR (500 MHz, C6D6): δ 7.99 (d, 3J(H,H) = 9.0 Hz, 1H), 7.88 (s,
1H), 7.74 (d, 3J(H,H) = 7.8 Hz, 6H), 7.68 (d, 3J(H,H) = 8.2 Hz, 1H),
7.65 (d, 3J(H,H) = 9.3 Hz, 1H), 7.62 (d, 3J(H,H) = 8.1 Hz, 1H), 7.51 (s,
1H), 7.32−7.26 (m, 7H), 7.13−6.79 (m, 20H, aryl-H), 4.48 (d, 2J(H,H)
= 12.2 Hz, 1H, CH2N), 3.60 (d, 2J(H,H) = 12.2 Hz, 1H, CH2N), 3.53 (d,
2J(H,H) = 13.7 Hz, 1H, o-C6H4CH2NMe2), 3.25 (s, 4H, free
C6H5NCH2NMe2), 2.98 (d, 2J(H,H) = 13.7 Hz, 1H, o-C6H4CH2NMe2),
2.47 (s, 3H, NCH3), 2.06 (s, 12 H, free C6H5CH2NMe2), 1.75 (br s, 3H,
o-C6H4CH2NMe2), 1.44 (s, 9 H, C(CH3)3), 1.41 (s, 9H, C(CH3)3), 1.01
(s, 3H, o-C6H4CH2NMe2). 13C{1H} NMR (100 MHz, C6D6): δ 179.7
1
(d, J(C,Y) = 62 Hz, C−Y), 164.4 (CO), 161.1 (CO), 146.1, 142.9,
142.3, 140.0, 138.3, 138.2, 137.8, 136.8, 136.6, 136.1, 135.7, 132.1, 131.3,
130.9, 129.6, 129.1, 128.9, 128.5, 128.3, 127.6, 127.5, 127.4, 127.2, 127.0,
126.4, 126.3, 126.2, 125.4, 125.0, 124.9, 124.4, 123.,7 121.8, 120.0, 118.2
(aryl), 67.0 (CH2N), 64.5 (free C6H5CH2NMe2), 59.1 (CH2N), 45.4
(free C6H5CH2NMe2), 44.5 (N(CH3)2), 43.2 (N(CH3)2), 38.5
(CH3N), 35.4 (C(CH3)3), 34.3 (C(CH3)3), 32.2 (C(CH3)3), 30.1
(C(CH3)3).
2′-{[2-Hydroxy-5-methyl-3-(triisopropylsilyl)benzyl]-
methylamino}-3-(triphenylsilyl)-1,1′-binaphthalen-2-ol (8f). Pre-
1
pared from 4a and 5f. White solid, 60% yield. H NMR (300 MHz,
C6D6): δ 8.14 (s, 1H), 8.05 (s, 1H), 7.78 (d, 3J(H,H) = 8.6 Hz, 6H), 7.74
3
3
(m, 1H), 7.69 (d, J(H,H) = 7.9 Hz, 1H), 7.48 (d, J(H,H) = 7.9 Hz,
1H), 7.40 (d, 3J(H,H) = 8.5 Hz, 1H), 7.30 (d, 3J(H,H) = 9.1 Hz, 1H),
7.25−7.04 (m, 14H), 6.74 (br s, 1H, aryl-H), 4.18 (s, 1H, OH), 3.90 (d,
2J(H,H) = 13.2 Hz, 1H, CH2), 3.57 (d, 2J(H,H) = 13.2 Hz, 1H, CH2),
(S)-[Lu{NOBIN-TPS/t-Bu}(o-C6H4CH2NMe2)] ((S)-9a-Lu). To a mix-
ture of (S)-8a (23.6 mg, 0.038 mmol) and [Lu(o-C6H4CH2NMe2)3]
(22.0 mg, 0.038 mmol) was added C6D6 (0.55 mL). The mixture was
kept at room temperature for 30 min. 1H and 13C NMR spectra showed
clean formation of (S)-9a-Lu, which was used directly for catalytic
experiments. 1H NMR (500 MHz, C6D6, 60 °C): δ 7.98 (d, 3J(H,H) =
2.27 (s, 3H, CH3), 2.26 (s, 3H, CH3), 1.30 (sept, 3J(H,H) = 6.5 Hz, 3H,
3 CH(CH3)2), 1.09−1.04 (m, 18H, CH(CH3)2). 13C{1H} NMR (75
MHz, C6D6): δ 160.6, 155.2 (CO), 151.0, 142.1, 137.1, 136.9, 135.4,
135.2, 133.8, 132.7, 131.2, 130.7, 130.3, 129.6, 129.4, 128.5, 127.9, 127.5,
127.3, 127.2, 126.4, 126.0, 123.8, 123.7, 123.6, 121.5, 121.0, 120.2, 115.7
(aryl), 62.2 (CH2), 40.7 (NCH3), 20.9 (ArCH3), 19.5 (CH(CH3)2),
19.4 (CH(CH3)2), 12.0 (CH(CH3)2).
3
9.0 Hz, 1H), 7.92 (s, 1H), 7.76 (d, J(H,H) = 7.8 Hz, 6H), 7.66 (d,
3J(H,H) = 9.0 Hz, 1H), 7.62 (d, 3J(H,H) = 8.8 Hz, 1H), 7.55 (d, 4J(H,H)
= 2.2 Hz, 1H), 7.32−7.26 (m, 6H), 7.19−6.90 (m, 20H, aryl-H), 6.86−
6.78 (m, 3H), 6.64 (d, 3J(H,H) = 7.3 Hz, 1H), 6.48 (d, 3J(H,H) = 7.3 Hz,
1H), 4.57 (d, 2J(H,H) = 12.2 Hz, 1H, CH2N), 3.69 (d, 2J(H,H) = 12.2
Hz, 1H, CH2N), 3.62 (d, 2J(H,H) = 13.7 Hz, 1H, o-C6H4CH2NMe2),
3.24 (s, 4H, free C6H5NCH2NMe2), 2.88 (d, 2J(H,H) = 13.7 Hz, 1H, o-
C6H4CH2NMe2), 2.44 (s, 3H, NCH3), 2.06 (s, 12 H, free
C6H5CH2NMe2), 1.75 (s, 3H, o-C6H4CH2NMe2), 1.46 (s, 9 H,
C(CH3)3), 1.42 (s, 9H, C(CH3)3), 1.31 (s, 3H, o-C6H4CH2NMe2).
13C{1H} NMR (125 MHz, C6D6): δ 187.5 (C−Lu), 165.0 (CO), 161.5
(CO), 146.2, 143.0, 140.0, 139.7, 138.3, 137.8, 136.8, 136.7, 136.2,
132.1, 130.6, 129.6, 129.1, 128.93, 128.87, 128.5, 128.4, 128.3, 127.9,
127.7, 127.4, 120.1, 118.3 (aryl), 66.2 (CH2N), 64.5 (free
C6H5CH2NMe2), 59.2 (CH2N), 45.4 (free C6H5CH2NMe2), 44.8
(N(CH3)2), 43.6 (N(CH3)2), 38.6 (CH3N), 35.3 (C(CH3)3), 34.2
(C(CH3)3), 32.2 (C(CH3)3), 30.7 (C(CH3)3).
2′-[(3,5-Di-tert-Butyl-2-hydroxybenzyl)methylamino]-3-(methyl-
diphenylsilyl)-1,1′-binaphthalen-2-ol (8g). Prepared from 4b and 5a.
White solid, 71% yield. 1H NMR (500 MHz, C6D6): δ 8.61 (s, 1H), 8.13
(s, 1H), 7.74 (d, 3J(H,H) = 8.6 Hz, 6H), 7.71−7.66 (m, 4H), 7.55 (d,
3J(H,H) = 8.2 Hz, 1H), 7.41 (d, 3J(H,H) = 8.2 Hz, 1H), 7.36 (d, 4J(H,H)
= 2.4 Hz, 1H), 7.31 (d, 3J(H,H) = 8.4 Hz, 1H), 7.20−7.11 (m, 6H, aryl-
H overlapping with C6D5H), 7.05−7.01 (m, 1H), 6.99−6.93 (m, 5H),
4
6.87 (d, J(H,H) = 2.4 Hz, 1H, aryl-H), 4.27 (s, 1H, OH), 3.82 (d,
2J(H,H) = 13.3 Hz, 1H, CH2), 3.63 (d, 2J(H,H) = 13.3 Hz, 1H, CH2),
2.24 (s, 3H, CH3), 1.35 (s, 9 H, C(CH3)3), 1.34 (s, 9H, C(CH3)3), 1.02
(s, 3H, SiCH3). 13C{1H} NMR (100 MHz, C6D6): δ 155.5, 154.4 (CO),
151.0, 140.8, 140.7, 140.4, 137.1, 136.8, 135.9, 135.8, 135.7, 135.5, 135.4,
134.0, 132.7, 130.9, 130.7, 130.4, 129.4, 129.3, 126.5, 125.3, 123.9, 123.7,
123.4, 123.2, 121.4, 121.3, 120.3, 115.3 (aryl), 63.3 (CH2), 40.4
(NCH3), 35.0 (C(CH3)3), 34.3 (C(CH3)3), 32.1 (C(CH3)3), 29.8
(C(CH3)3), −2.9 (SiCH3).
(S)-[Y{NOBIN-TPS/SiPh2Me}(o-C6H4CH2NMe2)] ((S)-9b-Y). To a
mixture of (S)-8b (29.0 mg, 0.033 mmol) and [Y(o-C6H4CH2NMe2)3]
(16.3 mg, 0.033 mmol) was added C6D6 (0.55 mL). The mixture was
kept at room temperature for 30 min. 1H and 13C NMR spectra showed
clean formation of (S)-9b-Y, which was used directly for catalytic
experiments. 1H NMR (500 MHz, C6D6, 60 °C): δ 7.94 (d, 3J(H,H) =
9.0 Hz, 1H), 7.76 (d, 3J(H,H) = 7.8 Hz, 6H), 7.53−6.57 (m, 40H), 6.54
2′-{[2-Hydroxy-5-methyl-3-(methyldiphenylsilyl)benzyl]-
methylamino}-3-(methyldiphenylsilyl)-1,1′-binaphthalen-2-ol (8h).
1
Prepared from 4b and 5b. White solid, 93% yield. H NMR (500
MHz, C6D6): δ 8.17 (s, 1H), 8.03 (s, 1H), 7.75 (d, 3J(H,H) = 8.6 Hz,
1H), 7.68 (m, 5H), 7.60 (m, 1H), 7.49 (d, 3J(H,H) = 7.1 Hz, 1H), 7.39
(d, 3J(H,H) = 7.8 Hz, 1H), 7.31 (d, 3J(H,H) = 8.6 Hz, 1H), 7.24−7.08
(m, 15H), 6.98 (m, 4H), 6.70 (s, 1H, aryl-H), 4.31 (s, 1H, OH), 3.82 (d,
2J(H,H) = 13.2 Hz, 1H, CH2), 3.67 (d, 2J(H,H) = 13.2 Hz, 1H, CH2),
2.23 (s, 3H, NCH3), 2.04 (s, 3H, ArCH3), 1.00 (s, 3H, SiCH3), 0.85 (s,
3H, SiCH3). 13C{1H} NMR (125 MHz, C6D6): δ 160.8, 155.4 (CO),
150.9, 140.7, 137.74, 137.66, 137.2, 136.8, 135.8, 135.7, 135.6, 135.0,
133.9, 132.5, 132.2, 130.8, 130.0, 129.44, 129.38, 128.9, 128.5, 127.1,
126.3, 126.2, 124.9, 123.7, 122.1, 121.2, 120.1, 115.2 (aryl), 61.8 (CH2),
40.8 (NCH3), 20.5 (ArCH3), −2.3 (SiCH3), −2.7 (SiCH3).
2
(m, 2H, aryl-H), 4.47 (d, J(H,H) = 12.2 Hz, 1H, CH2N), 3.78 (d,
2J(H,H) = 12.2 Hz, 1H, CH2N), 3.21 (s, 4H, free C6H5NCH2NMe2),
2.70 (d, 2J(H,H) = 13.7 Hz, 1H, o-C6H4CH2NMe2), 2.47 (s, 3H,
NCH3), 2.32 (d, 2J(H,H) = 13.7 Hz, 1H, o-C6H4CH2NMe2), 2.03 (s, 12
H, free C6H5CH2NMe2), 1.22 (s, 3H, o-C6H4CH2NMe2), 1.04 (s, 3H, o-
C6H4CH2NMe2), 0.78 (s, 3H, SiCH3). 13C{1H} NMR (100 MHz,
C6D6): δ 179.4 (d, 1J(C,Y) = 61 Hz, C−Y), 168.4 (CO), 164.6 (CO),
146.5, 143.0, 140.4, 140.0, 139.0, 138.1, 137.72, 137.67, 137.03, 136.98,
136.9, 136.8, 136.7, 136.1, 136.0, 135.6, 135.4, 135.3, 132.0, 131.0,
129.81, 129.76, 129.3, 129.1, 129.04, 129.01, 128.54, 128.50, 128.45,
128.4, 128.1, 127.6, 127.4, 127.2, 126.5, 126.4, 126.0, 125.3, 125.2, 124.8,
124.6, 122.7, 121.8, 121.31, 120.0, 118.2 (aryl), 65.9 (CH2N), 64.5 (free
C6H5CH2NMe2), 58.7 (CH2N), 45.4 (free C6H5CH2NMe2), 44.0
(N(CH3)2), 42.6 (N(CH3)2), 38.7 (NCH3), 20.5 (ArCH3), −1.0
(SiCH3).
General Procedure for the NMR-Scale Preparation of 9-Ln. To
a mixture of diol proligand 8 (0.05 mmol) and the rare-earth-metal
precursor (0.05 mmol) was added C6D6 (490 mg, 500 μL). The mixture
was shaken vigorously and then left for 5 min at room temperature or
slightly elevated temperature. Clean quantitative conversion to the
diolate complex 9-Ln was confirmed by NMR spectroscopy. Aliquots of
the resulting complex solution were used directly for the catalytic
experiments.
(S)-[Y{NOBIN-TPS/TPS}(o-C6H4CH2NMe2)] ((S)-9c-Y). To a mixture
of (S)-8c (23.4 mg, 0.025 mmol) and [Y(o-C6H4CH2NMe2)3] (12.3
mg, 0.025 mmol) was added C6D6 (0.55 mL). The mixture was kept at
room temperature for 30 min. 1H and 13C NMR spectra showed clean
formation of (S)-9c-Y, which was used directly for catalytic experiments.
1H NMR (500 MHz, C6D6, 65 °C): δ 7.98 (s, 1H), 7.86 (d, 3J(H,H) =
(S)-[Y{NOBIN-TPS/t-Bu}(o-C6H4CH2NMe2)] ((S)-9a-Y). To a mixture
of (S)-8a (28.4 mg, 0.036 mmol) and [Y(o-C6H4CH2NMe2)3] (18.0
mg, 0.036 mmol) was added C6D6 (0.55 mL). The mixture was kept at
1
room temperature for 2 h. H and 13C NMR spectra showed clean
formation of (S)-9a-Y, which was used directly for catalytic experiments.
1403
dx.doi.org/10.1021/om3010614 | Organometallics 2013, 32, 1394−1408