COMMUNICATIONS
Decarboxylative and Denitrative Trifluoromethylation
Scheme 4. Proposed reaction mechanisms.
nistic investigations revealed that this reaction pro-
ceeded via a radical pathway. The method has been
extended to the denitrative trifluoromethylation of
aryl-substituted nitroethenes in the presence of an
iron(III) catalyst.
References
[1] a) Y. Matsumura, Fluorinated Prostanoids: Develop-
ment of Tafluprost, a New Anti-Glaucoma Agent,
Blackwell, 2009; b) V. Bizet, T. Besset, D. Cahard, Cur-
rent Topics in Medicinal Chemistry, 2014, 14, 901–940;
c) S. Swallow, Prog. Med. Chem. 2015, 54, 65–133;
d) H. Boehm, D. Banner, M. Stahl, ChemBioChem
2004, 5, 637–643; e) K. Müller, C. Faeh, F. Diederich,
Science 2007, 317, 1881–1886.
[2] a) M. Katalin, J. Katalin, C. Gabor, Drug Metabolism
and Disposition 1997, 25, 1370–1378; b) M. Kelly, J.
Kincaid, Z.-L. Wei, WO Patent 2006093832, 2006; c) T.
Kuragano, S. Nakamura, T. Okauchi, Japanese Patent
19961112, 1996; d) H.-J. Lu, R. B. Silverman, J. Med.
Chem. 2006, 49, 7404–7412; e) A. Hafner, S. Bräse,
Adv. Synth. Catal. 2011, 353, 3044–3048; f) R. Heme-
laere, J. Desroches, J.-F. Paquin, Org. Lett. 2015, 17,
1770–1773.
Experimental Section
Typical Procedure for the Decarboxylative
Trifluoromethylation of a,b-Unsaturated Acids
A reaction tube was charged with 4-methylcinnamic acid
(1b) (38.6 mg, 0.2 mmol) at room temperature, then Togni
(II) reagent (63.2 mg, 0.2 mmol) and DMF (2 mL) were
added. The resulting mixture was stirred at 1208C in this
sealed tube equipped with a Teflon plug for 24 h. After cool-
ing to room temperature, the reaction mixture was
quenched and purified by flash silica gel column chromatog-
raphy (eluent: hexane/EtOAc) to afford the desired product
2b; yield: 35.3 mg (95%).
[3] T. Liang, C. N. Neumann, T. Ritter, Angew. Chem.
2013, 125, 8372–8423; Angew. Chem. Int. Ed. 2013, 52,
8214–8264.
[4] G. K. S. Prakash, H. S. Krishnan, G. A. Olah, Org. Lett.
Typical Procedure for the Denitrative
Trifluoromethylation of b-Nitrostyrenes
2012, 14, 1146–1149.
[5] M. Omote, M. Tanaka, A. Ando, Org. Lett. 2012, 14,
2286–2289.
[6] S. Kathiravan, I. A. Nicholls, Org. Lett. 2015, 17, 1874–
1877.
[7] a) T. Davies, R. N. Haszeldine, A. E. Tipping, J. Chem.
Soc. Perkin Trans. 1 1980, 927–932; b) N. Kamigata, T.
Fukushima, M. Yoshida, J. Chem. Soc. Chem.
Commun. 1989, 1559–1560; c) J. D. Nguyen, J. W.
Tucker, M. D. Konieczynska, C. R. J. Stephenson, J.
Am. Chem. Soc. 2011, 133, 4160–4163; d) N. Iqbal,
S. K. Choi, E. A. Ko, E. J. Cho, Tetrahedron Lett. 2012,
53, 2005–2008; e) N. Iqbal, S. Choi, E. Kim, E. J. Cho,
J. Org. Chem. 2012, 77, 11383–11387.
A reaction tube was charged with 1-methyl-4-(2-nitrovinyl)-
benzene (3b) (32.6 mg, 0.2 mmol) at room temperature,
then Fe(acac)3 (70.6 mg, 0.2 mmol), Togni (II) reagent
(63.2 mg, 0.2 mmol) and DMF (2 mL) were added. The re-
sulting mixture was stirred at 1208C in this sealed tube
equipped with a Teflon plug for 24 h. After cooling to room
temperature, the reaction mixture was quenched and puri-
fied by flash silica gel column chromatography (eluent:
hexane/EtOAc) to afford the desired product 2b; yield:
31.2 mg (84%).
[8] E.-J. Cho, S. L. Buchwald, Org. Lett. 2011, 13, 6552–
6555.
Acknowledgements
[9] a) J. Xu, D.-F. Luo, L. Liu, Chem. Commun. 2011, 47,
4300–4302; b) T. Liu, Q. Shen, Org. Lett. 2011, 13,
2342–2345; c) Y. Li, L.-P. Wu, M. Beller, Chem.
Commun 2013, 49, 2628–2630; d) A. T. Parsons, T. D.
Senecal, S. L. Buchwald, Angew. Chem. 2012, 124,
3001–3004; Angew. Chem. Int. Ed. 2012, 51, 2947–2950;
e) M. Presset, D. Oehlrich, G. A. Molander, J. Org.
Chem. 2013, 78, 12837–12843; f) Y. Yasu, T. Koike, M.
We thank the Fundamental Research Funds for the Central
Universities (30920130111002), National Natural Science
Foundation of China (21476116), Natural Science Founda-
tion of Jiangsu (BK20141394) for sponsoring this work. We
also thank the Center for Advanced Materials and Technolo-
gy for financial support.
Adv. Synth. Catal. 2015, 357, 3447 – 3452
ꢁ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3451