620
I. Tirotta et al. / Tetrahedron Letters 54 (2013) 618–620
3. Cardillo, G.; Gentilucci, L.; Tolomelli, A. Aldrichim. Acta 2003, 36, 39–50.
4. Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247–258.
5. Wu, Y.-C.; Zhu, J. Org. Lett. 2009, 11, 5558–5561.
6. Li, P.; Evans, C. D.; Wu, Y.; Cao, B.; Hamel, E.; Joullie, M. M. J. Am. Chem. Soc.
2008, 130, 2351–2364.
7. Sato, K.; Kozikowski, A. P. Tetrahedron Lett. 1989, 30, 4073–4076.
8. Bennani, Y. L.; Zhu, G.-D.; Freeman, J. C. Synlett 1998, 754–756.
9. Nishikawa, T.; Kajii, S.; Wada, K.; Ishikawa, M.; Isobe, M. Synthesis 2002, 1658–
1662.
10. Nishikawa, T.; Koide, Y.; Kajii, S.; Wada, K.; Ishikawa, M.; Isobe, M. Org. Biomol.
Chem. 2005, 3, 687.
11. Nishikawa, T.; Koide, Y.; Kanakubo, A.; Yoshimura, H.; Isobe, M. Org. Biomol.
Chem. 2006, 4, 1268.
Scheme 3.
12. Representative procedure: Aziridine
2 (1.27 mmol), indole (1) (298 mg,
It is apparent that the Troc protecting/activating group suppresses
the ring expansion pathway, thereby allowing for the greatest
yields of tryptophan product through the substitution pathway.
Substituted tryptophan derivatives have been used in the syn-
thesis of peptide natural products.21–27 For example, boronate-
substituted tryptophan derivatives28,29 have been employed in
conjugate additions and Suzuki–Miyaura couplings in the prepara-
tion of the biaryl-linked peptides, celogentin,30 and complesta-
tin.31–34 Accordingly, we sought to demonstrate the utility of
Troc-aziridine 2d through the preparation of enantiopure trypto-
phan boronate derivative 9. Treatment of indole-5-boronate 8 with
aziridine 2d in the presence of Sc(OTf)3 gave the tryptophan boro-
nate 935 in 45% isolated yield, with no oxazolidinone 4 or other
byproducts detected (Scheme 3).
In conclusion, we have demonstrated that ring-opening of aziri-
dine-2-carboxylates with indoles to generate tryptophan deriva-
tives is optimized through the use of an N-Troc protecting group
on the aziridinyl nitrogen in combination with an oxophilic Lewis
acid, in order to disfavor the competing ring expansion reaction
that generates an oxazolidinone byproduct.
2.54 mmol), and the Lewis acid (1.27 mmol) were dissolved in CH2Cl2 (5 mL)
and the mixture was stirred at room temperature for 24 h. The reaction was
concentrated under reduced pressure and analysed by 1H NMR spectroscopy.
The crude material was purified on silica to give tryptophan
oxazolidinone 4 (see text).
3 and/or
13. Sibi, M. P.; Rutherford, D.; Sharma, R. J. Chem. Soc., Perkin Trans. 1 1994, 1675.
14. Armaroli, S.; Cardillo, G.; Gentilucci, L.; Gianotti, M.; Tolomelli, A. Org. Lett.
2000, 2, 1105–1107.
15. Tomasini, C.; Vecchione, A. Org. Lett. 1999, 1, 2153–2156.
16. Lucarini, S.; Tomasini, C. J. Org. Chem. 2001, 66, 727–732.
17. Ferraris, D.; Drury, W. J., III; Cox, C.; Lectka, T. J. Org. Chem. 1998, 63, 4568–
4569.
18. Hori, K.; Nishiguchi, T.; Nabeya, A. J. Org. Chem. 1997, 62, 3081–3088.
19. Bucciarelli, M.; Forni, A.; Moretti, I.; Prati, F.; Torre, G. Tetrahedron: Asymmetry
1995, 6, 2073–2080.
20. Data for 3d: 1H NMR (400 MHz, CDCl3); d 8.11 (br s, 1H), 7.55 (d, J = 7.9 Hz, 1H),
7.36 (d, J = 8.1 Hz, 1H), 7.20 (m, 1H), 7.12 (m, 1H), 7.02 (d, J = 2.3 Hz, 1H), 5.57
(br d, J = 8.3 Hz, 1H), 4.80 (d, J = 12.0 Hz, 1H), 4.75 (dt, J = 8.4, 5.4 Hz, 1H), 4.66
(d, J = 12.0 Hz, 1H), 3.70 (s, 3H), 3.32–3.38 (m, 2H). 13C NMR (125 MHz, CDCl3);
d 171.8, 153.9, 136.1, 127.5, 122.8, 122.3, 119.8, 118.6, 111.2, 109.7, 95.4, 74.6,
54.7, 52.5, 27.9. HRMS: m/z 393.0171, [M+H]+; C15H16Cl3N2O4 requires
393.0176. ½a 2D2
ꢁ 44.44 (c 0.65, CHCl3).
ꢀ
21. Yuen, A. K. L.; Hutton, C. A. Nat. Prod. Commun. 2006, 1, 907–913.
22. Feng, Y.; Chen, G. Angew. Chem., Int. Ed. 2009, 49, 958–961.
23. Ma, B.; Litvinov, D. N.; He, L.; Banerjee, B.; Castle, S. L. Angew. Chem., Int. Ed.
2009, 48, 6104–6107.
24. Li, B. T. Y.; White, J. M.; Hutton, C. A. Aust. J. Chem. 2010, 63, 438.
25. Bentley, D. J.; Moody, C. J. Org. Biomol. Chem. 2004, 2, 3545.
26. Deng, H.; Jung, J.-K.; Liu, T.; Kuntz, K. W.; Snapper, M. L.; Hoveyda, A. H. J. Am.
Chem. Soc. 2003, 125, 9032–9034.
27. Ma, C.; Liu, X.; Li, X.; Flippen-Anderson, J.; Yu, S.; Cook, J. M. J. Org. Chem. 2001,
66, 4525–4542.
28. Bartolucci, S.; Bartoccini, F.; Righi, M.; Piersanti, G. Org. Lett. 2012, 14, 600–603.
29. Prieto, M.; Mayor, S.; Lloyd-Williams, P.; Giralt, E. J. Org. Chem. 2009, 74, 9202–
9205.
30. Michaux, J.; Retailleau, P.; Campagne, J.-M. Synlett 2008, 1532–1536.
31. Wang, Z.; Bois-Choussy, M.; Jia, Y.; Zhu, J. Angew. Chem., Int. Ed. 2010, 49, 2018–
2022.
Acknowledgment
Financial support from the Australian Research Council
(DP110100112) is acknowledged.
Supplementary data
Supplementary data (1H and 13C NMR spectra of new com-
pounds) associated with this article can be found, in the online ver-
32. Jia, Y.; Bois-Choussy, M.; Zhu, J. Angew. Chem., Int. Ed. 2008, 47, 4167–4172.
33. Yamada, Y.; Akiba, A.; Arima, S.; Okada, C.; Yoshida, K.; Itou, F.; Kai, T.; Satou,
T.; Takeda, K.; Harigaya, Y. Chem. Pharm. Bull. 2005, 53, 1277–1290.
34. Shinohara, T.; Deng, H.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2005,
127, 7334–7336.
References and notes
35. Data for 9: 1H NMR (500 MHz, CDCl3); d 8.18 (br s, 1H), 8.02 (s, 1H), 7.64 (dd,
J = 8.2, 1.0 Hz, 1H), 7.34 (dd, J = 8.2, 0.8 Hz, 1H), 7.01 (d, J = 2.4 Hz, 1H), 5.56 (br
d, J = 8.1 Hz, 1H), 4.76–4.71 (m, 3H), 3.75 (s, 3H), 3.37–3.41 (m, 2H), 1.37 (s,
6H), 1.35 (s, 6H). 13C NMR (125 MHz, CDCl3); d 171.8, 153.9, 138.1, 128.5,
127.2, 126.3, 122.9, 110.6, 110.2, 95.4, 83.5, 74.5, 54.5, 52.2, 27.5, 25.0, 24.8.
1. Botuha, C.; Chemla, F.; Ferreira, F.; Perez-Luna, A. In Heterocycles in Natural
Product Synthesis; Majumdar, K. C., Chattopadhyay, S. K., Eds.; Wiley-VCH
GmbH & Co. KGaA, 2011; pp 3–40.
2. Zhou, P.; Chen, B.-C.; Davis, F. A. In Aziridines and Epoxides in Organic Synthesis;
Yudin, A. K., Ed.; Wiley-VCH GmbH & Co. KGaA: Weinheim, Germany, 2006; pp
73–115.
MS(ESI) m/z 519.09, [M+H]+. ½a D22
ꢀ
+35.58 (c 0.90, CHCl3).