the separated hole generated from the exciton, thus im-
proving hole-transport.7 Regarding the bridge, in recent
years we have developed a series of sensitizers in which
oligothienylenevinylenes (oTVs)8 with different lengths
were employed as donors9 or bridges10 between the donor
and the acceptor. These units were chosen because of the
excellent wire behavior of oTVs.11
bromide derivatives and 5-formylthiophene-2-yl-2-boro-
nic acid in 75% yield in both cases. Subsequent reduction
of the corresponding aldehydes 2a,b with NaBH4 and
reaction with triethylphosphite gave phosphonates 3a,b
in good yields. Careful stoichiometric HornerꢀWittig
reaction between 3a,b and 2TV-2CHO afforded 4a,b in
64 and 60% yield, respectively. The final dyes 1a,b were
obtained by Knoevenagel condensation of 4a,b with cya-
noacetic acid as dark blue solids in good yields (1a: 71%
1
and 1b: 85%). All compounds were characterized by H
and 13C NMR, FT-IR and MALDI-MS spectrometry (see
Supporting Information).
The optical and electrochemical properties of 1a and 1b
were analyzed by UVꢀvis absorption spectroscopy, fluo-
rescence emission spectroscopy and cyclic (CV) and Oster-
young square wave (OSWV) voltammetries, and the data
are displayed in Table 1.
In a dichloromethane solution, 1a,b showed strong
absorption over the entire visible region (up to 700 nm,
Figure 2) with broad peaks (and intense absorption) at
555 nm (log ε = 4.62) and 462 nm (log ε = 4.82),
respectively. The higher bathochromic shift observed for
1b in comparison to 1a can be attributed to better light
harvesting behavior, which improves the photocurrent
generation in the DSC (vide infra).
Figure 1. Molecular structures of dyes 1a,b.
We report here the synthesis of two new dyes with strong
absorption in the visible/near IR region of the spectrum
(Figure 1) and their application in DSCs. The new sensi-
tizers are based on TPA as a donor, a three-unit oTV,
bearing hydrophobic alkyl chains to impart solubility and
prevent aggregation (and thus to avoid self-quenching of
the dye excited state),12 as the π-connector, and 2-cya-
noacrylic acid as the electron acceptor.
Sensitizers 1a,b were obtained in good yields by the
synthetic protocol shown in Scheme 1.
Aldehydes 2a,b were obtained by palladium-catalyzed
Stille coupling of the corresponding triphenylamine
For both dyes 1a,b, a positive solvatochromism of the
maximum absorption band was observed on increasing the
solvent polarity (Figure S28, Supporting Information),
thus confirming the CT character of this band. Moreover,
a good correlation (correlation coefficient > 0.97) was
found between the absorption maxima and the Kamletꢀ
Taft constants (π*)13 (Figure S29 and Table S3ꢀS4,
Supporting Information). The slope (S) of the Kamletꢀ
Taft equation (E = E° þ Sπ*) is higher, in absolute value,
for 1b (S = ꢀ4.98) than for 1a (S = ꢀ4.52) (Table S5,
Supporting Information), indicating a higher polarizabil-
ity for 1b as a consequence of the higher electron donor
ability of the alkoxy-TPA moiety. The dyes exhibited
emission bands at 760 nm (1a, λexc= 555 nm) and 770 nm
(1b, λexc= 562 nm) (Figures S30ꢀS31, Supporting
Information). These bands were totally quenched after
adsorption onto TiO2, indicating an efficient photoin-
duced electron transfer process from TPA moieties to the
TiO2 nanoparticles. The oligothienylene-vinylene acts as
an electron wire, favoring the efficiency between donors
and acceptors.10
The redox properties of 1a and 1b were investigated by
cyclic (CV) and Osteryoung square wave (OSWV) voltam-
metries in o-dichlorobenzene:acetonitrile (4:1) (Table 1,
Figures S32 and S33, Supporting Information). In the
cathodic side, the two compounds show a first reversible
oxidation wave at 0.22 V (1a) and 0.08 V (1b); the presence
of the electron-donating alkoxy groups significantly re-
duces the oxidation potential of 1b in comparison to that
of 1a. A second reversible oxidation wave is observed at
ꢀ
(7) (a) Karpe, S.; Cravino, A.; Frere, P.; Allain, M.; Mabon, G.;
Roncali, J. Adv. Funct. Mater. 2007, 17, 1163. (b) Roquet, S.; Cravino,
ꢀ
A.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J. J. Am. Chem. Soc.
2006, 128, 3459. (c) Cravino, A.; Leriche, P.; Aleveque, O.; Roquet, S.;
Roncali, J. Adv. Mater. 2006, 18, 3033. (d) Wu, G.; Zhao, G.; He, C.;
Zhang, J.; He, Q.; Chen, X.; Li, Y. Sol. Energy Mater. Sol. Cells 2009, 93,
ꢁ
ꢀ
108. (e) Leriche, P.; Frere, P.; Cravino, A.; Aleveque, O.; Roncali, J.
J. Org. Chem. 2007, 72, 8332.
ꢁ
(8) (a) Jestin, I.; Frere, P.; Mercier, N.; Levillain, E.; Stievenard, D.;
Roncali, J. J. Am. Chem. Soc. 1998, 120, 8150. (b) Oswald, F.; Islam,
D.-M. S.; Araki, Y.; Troiani, V.; de la Cruz, P.; Ito, O.; Langa, F.
Chem.;Eur. J. 2007, 13, 3924.
(9) (a) Caballero, R.; Barea, E. M.; Fabregat-Santiago, F.; de la
ꢀ
Cruz, P.; Marquez, L.; Langa, F.; Bisquert, J. J. Phys. Chem. C 2008,
112, 18623. (b) Barea, E. M.; Caballero, R.; Fabregat-Santiago, F.; de la
Cruz, P.; Langa, F.; Bisquert, J. ChemPhysChem 2010, 11, 245. (c)
ꢀ
Mora-Sero, I.; Gros, D.; Dittereder, T.; Lutich, A. A.; Susha, A. S.;
Dittrich, T.; Belaidi, A.; Caballero, R.; Langa, F.; Bisquert, J.; Rogach,
A. L. Small 2010, 6, 221.
(10) (a) Clifford, J. N.; Forneli, A.; Lopez-Arroyo, L.; Caballero, R.;
ꢀ
de la Cruz, P.; Langa, F.; Palomares, E. ChemSusChem 2009, 2, 344. (b)
ꢀ
Barea, E. M.; Caballero, R.; Lopez-Arroyo, L.; Guerrero, A.; de la Cruz,
P.; Langa, F. ChemPhysChem 2011, 12, 961.
(11) (a) Oswald, F.; Islam, D.-M. S.; Araki, Y.; Troiani, V.; Caballero,
R.;delaCruz, P.;Ito, O.;Langa,F.Chem. Commun. 2007, 4498. (b) Casado,
ꢀ ꢀ
J.; Rodrıguez Gonzalez, S.; Moreno Oliva, M.; Lopez Navarrete, J. T.;
´
Caballero, R.; de la Cruz, P.; Langa, F. Chem.;Eur. J. 2009, 15, 2548. (c)
Urbani, M.; Pelado, B.; de la Cruz, P.; Yamanaka, K.; Ito, O.; Langa, F.
Chem.;Eur. J. 2011, 17, 5432. (d) Urbani, M.; Ohkubo, K.; Islam, S. D. M.;
Fukuzumi, S.; Langa, F. Chem.;Eur. J. 2012, 18, 7473. (e) Rodrı
´
guez
ꢀ
Gonzalez, S.; Gonzalez Cano, R.; Ruiz Delgado, M. C.; Caballero, R.; de la
Cruz, P.; Langa, F.; Lopez Navarrete, J. T.; Casado, J. J. Am. Chem. Soc.
ꢀ
ꢀ
2012, 134, 5675.
(13) (a) Kamlet, M. J.; Abboud, J. L.; Taft, R. W. J. Am. Chem. Soc.
1977, 99, 6027. (b) Kamlet, M. J.; Abboud, J. L.; Abraham, M. H.; Taft,
R. W. J. Org. Chem. 1983, 48, 2877.
(12) Ehret, A.; Stuhl, L.; Spitler, M. T. J. Phys. Chem. B 2001, 105,
9960.
Org. Lett., Vol. 14, No. 22, 2012
5733