770
Vol. 60, No. 6
(1991).
influence on the function of RNase H. Therefore, one of the
designs to improve inhibitory activity is to modify the com-
pound to bear some polar functional group that enables a
strong interaction with Ser499. In order to enhance the bind-
ing affinity of the compounds with RNase H active site, the
incorporation of a polar functional group bound to phenyl
ring is one of the possible conversions of our derivatives. The
distance between methoxy group and the amine of Asn474
largely fluctuated during MD simulation. If the interaction
with Asn474 is enforced, compound will be more stably com-
bined with the RNase H domain.
7) Telesnitsky A., Goff S. P., EMBO J., 12, 4433–4438 (1993).
8) Borkow G., Fletcher R. S., Barnard J., Arion D., Motakis D., Dmit-
rienko G. I., Parniak M. A., Biochemistry, 36, 3179–3185 (1997).
9) Tramontano E., Esposito F., Badas R., Di Santo R., Costi R., La
Colla P., Antiviral Res., 65, 117–124 (2005).
10) Tarrago-Litvak L., Andreola M. L., Fournier M., Nevinsky G.
A., Parissi V., de Soultrait V. R., Litvak S., Curr. Pharm. Des., 8,
595–614 (2002).
11) Cowan J. A., Ohyama T., Howard K., Rausch J. W., Cowan S. M.,
Le Grice S. F., J. Biol. Inorg. Chem., 5, 67–74 (2000).
12) Haren L., Ton-Hoang B., Chandler M., Annu. Rev. Microbiol., 53,
245–281 (1999).
13) Steitz T. A., Smerdon S. J., Jäger J., Joyce C. M., Science, 266,
2022–2025 (1994).
14) Nowotny M., Gaidamakov S. A., Crouch R. J., Yang W., Cell, 121,
1005–1016 (2005).
15) Nowotny M., Gaidamakov S. A., Crouch R. J., Yang W., EMBO J.,
25, 1924–1933 (2006).
16) Shaw-Reid C. A., Munshi V., Graham P., Wolfe A., Witmer M.,
Danzeisen R., Olsen D. B., Carroll S. S., Embrey M., Wai J. S.,
Miller M. D., Cole J. L., Hazuda D. J., J. Biochem., 278, 2777–2780
(2003).
17) Hang J. Q., Rajendran S., Yang Y., Li Y., In P. W. K., Overton H.,
Parkes K. E. B., Cammack N., Martin J. A., Klumpp K., Biochem.
Biophys. Res. Commun., 317, 321–329 (2004).
18) Budihas S. R., Gorshkova I., Gaidamakov S., Wamiru A., Bona M.
K., Parniak M. A., Crouch R. J., McMahon J. B., Beutler J. A., Le
Grice S. F., Nucleic Acids Res., 33, 1249–1256 (2005).
19) Fuji H., Urano E., Futahashi Y., Hamatake M., Tatsumi J., Hoshino
T., Morikawa Y., Yamamoto N., Komano J., J. Med. Chem., 52,
1380–1387 (2009).
20) Yanagita H., Urano E., Matsumoto K., Ichikawa R., Takaesu Y.,
Ogata M., Murakami T., Wu H. G., Chiba J., Komano J., Hoshino
T., Bioorg. Med. Chem., 19, 816–825 (2011).
21) Chan K. C., Budihas S. R., Le Grice S. F., Parniak M. A., Crouch
R. J., Gaidamakov S. A., Isaaq H. J., Wamiru A., McMahon J. B.,
Beutler J. A., Anal. Biochem., 331, 296–302 (2004).
22) Parniak M. A., Min K. L., Budihas S. R., Le Grice S. F., Beutler J.
A., Anal. Biochem., 322, 33–39 (2003).
Conclusion
More than 30 chemical compounds were synthesized for
developing the inhibitors of RNase H activity of HIV-1 re-
verse transcriptase. Inhibitory potency of RNase H enzymatic
activity was measured in a biochemical assay with a real-time
fluorescence monitoring method. The active compounds found
in our previous studies commonly bear nitro-furan ring con-
necting to hydrophobic region via an ester linkage. Conversion
of the nitro-furan group into pyrrole drastically decreased the
inhibitory activity while conversion into nitro-thiophene main-
tained the compound potency. This means that the structural
basis of nitro-furan or nitro-thiophene is indispensable for in-
hibitory activity. An improvement in compound potency was
observed when a phenyl-ester moiety was connected to the
nitro-furan and further methoxy-carbonyl and methoxy groups
were bound to the phenyl ring. No notable change in inhibi-
tory potency was observed when benzyl-ester based substitute
was connected to nitro-furan. Modulation of ester linkage
resulted in complete loss of compound potency. Molecular
dynamics simulation was performed to examine the stability
of the binding structure of a synthesized active compound
to RNase H domain. It was demonstrated that a potent com-
pound was stably bound to the active site with establishing
strong coordinate bonds with divalent metal ions located at the
active site. The present study provides important information
for designing prospective chemical structures inhibiting HIV-1
RNase H activity.
23) Lansdon E. B., Liu Q., Leavitt S. A., Balakrishnan M., Perry J. K.,
Lancaster-Moyer C., Kutty N., Liu X., Squires N. H., Watkins W.
J., Kirschberg T. A., Antimicrob. Agents Chemother., 55, 2905–2915
(2011).
Acknowledgments This work was supported by a Health 24) Martí-Renom M. A., Stuart A. C., Fiser A., Sánchez R., Melo F.,
Sali A., Annu. Rev. Biophys. Biomol. Struct., 29, 291–325 (2000).
25) Kirschberg T. A., Balakrishnan M., Squires N. H., Barnes T., Bren-
and Labor Science Research Grant for Research on Publicly
Essential Drugs and Medical Devices from the Ministry of
Health and Labor of Japan. A part of this work was also sup-
ported by a Grant-in-Aid for Scientific Research (C) from
Japan Society for the Promotion of Science (JSPS). Theo-
retical calculations were performed at the Research Center for
Computational Science, Okazaki, Japan and at the Information
dza K. M., Chen X., Eisenberg E. J., Jin W., Kutty N., Leavitt S.,
Liclican A., Liu Q., Liu X., Mak J., Perry J. K., Wang M., Watkins
W. J., Lansdon E. B., J. Med. Chem., 52, 5781–5784 (2009).
26) Himmel D. M., Maegley K. A., Pauly T. A., Bauman J. D., Das
K., Dharia C., Clark A. D. Jr., Ryan K., Hickey M. J., Love R. A.,
Hughes S. H., Bergqvist S., Arnold E., Structure, 17, 1625–1635
Technology Center of the University of Tokyo and also by the
high-performance computer system at Institute for Media In-
formation Technology in Chiba University.
(2009).
27) Su H. P., Yan Y., Prasad G. S., Smith R. F., Daniels C. L., Abey-
wickrema P. D., Reid J. C., Loughran H. M., Kornienko M., Sharma
S., Grobler J. A., Xu B., Sardana V., Allison T. J., Williams P. D.,
Darke P. L., Hazuda D. J., Munshi S., J. Virol., 84, 7625–7633
(2010).
28) Li H., Robertson A. D., Jensen J. H., Proteins, 61, 704–721 (2005).
29) Cieplak P., Cornell W. D., Bayly C., Kollman P. A., J. Comput.
Chem., 16, 1357–1377 (1995).
References
1) Goody R. S., Müller B., Restle T., FEBS Lett., 291, 1–5 (1991).
2) Ren J., Stammers D. K., Virus Res., 134, 157–170 (2008).
3) Andréola M. L., De Soultrait V. R., Fournier M., Parissi V., Desjob-
ert C., Litvak S., Expert Opin. Ther. Targets, 6, 433–446 (2002).
4) Klumpp K., Mirzadegan T., Curr. Pharm. Des., 12, 1909–1922
(2006).
30) Matsuyama S., Aydan A., Ode H., Hata M., Sugiura W., Hoshino T.,
J. Phys. Chem. B, 114, 521–530 (2010).
31) Sano E., Li W., Yuki H., Liu X., Furihata T., Kobayashi K., Chiba
K., Neya S., Hoshino T., J. Comput. Chem., 31, 2746–2758 (2010).
5) Tramontano E., Mini Rev. Med. Chem., 6, 727–737 (2006).
6) Tanese N., Telesnitsky A., Goff S. P., J. Virol., 65, 4387–4397