Job/Unit: O20960
/KAP1
Date: 06-09-12 15:34:09
Pages: 8
F. Grisi, C. Costabile, A. Grimaldi, C. Viscardi, C. Saturnino, P. Longo
FULL PAPER
7.27 (t, J = 7.7 Hz, 1 H), 7.15 (t, J = 7.5 Hz, 1 H), 7.09 (br. s, NH), basis set with polarization functions of Ahlirchs and co-worker
6.81 (dd, J = 10.9, 17.3 Hz, 1 H), 5.82 (m, 1 H), 5.69 (d, J =
17.3 Hz, 1 H), 5.41 (d, J = 10.9 Hz, 1 H), 4.98 (d, J = 17.1 Hz, 1
H), 4.92 (d, J = 10.2 Hz, 1 H), 2.35 (t, J = 7.3 Hz, 2 H), 2.04 (q, J
= 6.9 Hz, 2 H), 1.70 (m, 2 H), 1.43–1.24 (m, 10 H) ppm. 13C NMR
(250 MHz, CD2Cl2): δ = 171.9, 139.9, 135.3, 132.7, 131.2, 128.8,
127.2, 125.8, 124.5, 118.0, 114.4, 38.0, 34.4, 29.9, 29.6, 29.5,
26.2 ppm.
(standard SVP basis set in Gaussian09), for H, C, N, and O.[29]
Minimum free-energy structures were characterized by the presence
of zero imaginary frequency. Solvent effects were estimated in cal-
culations based on the polarizable continuous solvation model
PCM. CH2Cl2 was chosen as model solvent.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and characterization of all new com-
pounds as well as Cartesian coordinates and internal energies of
calculated structures.
10: White microcrystalline solid (70%). 1H NMR (400 MHz,
CDCl3): δ = 7.56 (d, J = 8.8 Hz, 1 H), 6.97 (d, J = 2.9 Hz, 1 H),
6.95 (s, NH), 6.84 (dd, J = 2.9, 8.9 Hz, 1 H), 6.75 (dd, J = 10.9,
17.6 Hz, 1 H), 5.87–5.75 (m, 1 H), 5.67 (d, J = 17.5 Hz, 1 H), 5.38
(d, J = 10.9 Hz, 1 H), 4.98 (d, J = 17.3 Hz, 1 H), 4.92 (d, J =
10.2 Hz, 1 H), 3.81 (s, 3 H), 2.36 (t, J = 7.5 Hz, 2 H), 2.07–1.98
(m, 2 H), 1.77–1.68 (m, 2 H), 1.43–1.23 (m, 10 H) ppm. 13C NMR
(400 MHz, CDCl3): δ = 171.8, 157.5, 139.4, 132.9, 132.5, 127.7,
126.4, 117.9, 114.4, 114.2, 111.8, 55.7, 37.6, 34.0, 29.5, 29.3, 29.1,
26.0 ppm.
Acknowledgments
The authors wish to thank Patrizia Oliva for the technical assist-
ance. Computational support from CINECA - High Performance
Computing Portal in the framework of class C awarded proposal
to the ISCRA programme (code RCMMSCMO - HP10C8VOGT)
and financial support from the Ministero dellЈUniversità e della
Ricerca Scientifica e Tecnologica are gratefully acknowledged.
Representative Procedure for the Synthesis of Macrocyclic Com-
pounds 11–16:[24] A 100-mL three-necked round-bottomed flask
was fitted with a condenser and two additional funnels. Solutions
of the ruthenium carbene (6.0 μmol) and the diene (120 μmol), each
in CH2Cl2 (10 mL), were independently added dropwise to re-
fluxing CH2Cl2 (10 mL) over a period of 15 min under a nitrogen
atmosphere. Aliquots were removed periodically for GC analysis,
and GC retention times and integration were confirmed with sam-
ples of authentic material. After 24 h, the solvent was removed in
vacuo, and the residue was purified by flash chromatography (hex-
ane/ethyl acetate, 10:1 for 12; hexane/ethyl acetate, 6:4 for 15, hex-
ane/ethyl acetate, 5:2 for 16) to afford analytically pure compounds.
[1] For selected reviews, see: a) A. Fürstner, Angew. Chem. 2000,
112, 3140; Angew. Chem. Int. Ed. 2000, 39, 3012–3043; b)
M. R. Buchmeiser, Chem. Rev. 2000, 100, 1565–1604; c) T. M.
Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18–29; d) S. J.
Connon, S. Blechert, Angew. Chem. 2003, 115, 1944; Angew.
Chem. Int. Ed. 2003, 42, 1900–1923; e) A. Deiters, S. F. Martin,
Chem. Rev. 2004, 104, 2199–2238; f) R. H. Grubbs, Handbook
of Olefin Metathesis, Wiley-VCH, Weinheim, 2003; g) R. R.
Schrock, A. H. Hoveyda, Angew. Chem. 2003, 115, 4740; An-
gew. Chem. Int. Ed. 2003, 42, 4592–4633; h) R. H. Grubbs, Tet-
rahedron 2004, 60, 7117–7140; i) D. Astruc, New J. Chem. 2005,
29, 42–56; j) K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew.
Chem. 2005, 117, 4564; Angew. Chem. Int. Ed. 2005, 44, 4490–
4527; k) R. R. Schrock, Angew. Chem. 2006, 118, 3832; Angew.
Chem. Int. Ed. 2006, 45, 3748–3759; l) R. H. Grubbs, Angew.
Chem. 2006, 118, 3845; Angew. Chem. Int. Ed. 2006, 45, 3760–
3765; m) A. H. Hoveyda, A. R. Zhugralin, Nature 2007, 450,
243–251; n) W. A. van Otterlo, C. B. de Koning, Chem. Rev.
2009, 109, 3743–3782.
12: E isomer was obtained as a colorless oil (89%). 1H NMR
(400 MHz, CDCl3): δ = 7.52 (d, J = 7.7 Hz, 1 H), 7.31–7.19 (m, 2
H), 7.08 (d, J = 7.7 Hz, 1 H), 6.59 (d, J = 15.9 Hz, 1 H), 6.11 (dt,
J = 6.7, 16.0 Hz, 1 H), 2.64 (m, 2 H), 2.31 (q, J = 6.17 Hz, 2 H),
1.84 (br. m, 2 H), 1.61–1.28 (m, 10 H) ppm. 13C NMR (400 MHz,
CDCl3): δ = 172.1, 147.5, 132.9, 131.0, 127.7, 126.7, 126.2, 124.1,
123.0, 35.1, 30.6, 27.4, 26.1, 25.9, 25.3, 25.0, 24.0 ppm. C17H22O2
(258.36): calcd. C 79.03, H 8.58; found C 79.02, H 8.56.
[2] a) P. H. Deshmukh, S. Blechert, Dalton Trans. 2007, 2479–
2491; b) Y. Schrodi, R. L. Pederson, Aldrichim. Acta 2007, 40,
45–52; c) C. Samojłowicz, M. Bieniek, K. Grela, Chem. Rev.
2009, 109, 3708–3742; d) G. C. Vougioukalakis, R. H. Grubbs,
Chem. Rev. 2010, 110, 1746–1787.
15: E isomer was obtained as an off-white microcrystalline powder
(85%). 1H NMR (300 MHz, CDCl3): δ = 7.79 (d, J = 7.9 Hz, 1 H),
7.34 (d, J = 7.4 Hz, 1 H), 7.25 (t, J = 7.9 Hz, 1 H), 7.13 (t, J =
7.4 Hz, 1 H), 6.49 (d, J = 15.7 Hz, 1 H), 5.97 (dt, J = 6.9, 15.7 Hz,
1 H), 2.47 (m, 2 H), 2.20 (q, J = 6.23 Hz, 2 H), 1.80–1.26 (m, 12
H) ppm. 13C NMR (300 MHz, CDCl3): δ = 171.6, 135.5, 134.2,
131.6, 127.9, 127.3, 125.8, 125.7, 124.2, 37.7, 31.0, 27.5, 26.7, 26.1,
25.6, 25.0 ppm. C17H23NO (257.37): calcd. C 79.33, H 9.01, N 5.44;
found C 79.33, H 9.03, N 5.42.
[3] For recent examples, see: a) S. Blechert, M. Schuster, Angew.
Chem. 1997, 109, 2124; Angew. Chem. Int. Ed. Engl. 1997, 36,
2036–2056; b) A. Fürstner, Top. Catal. 1997, 4, 285–299; c) Z.
Yang, Y. He, D. Vourloumis, H. Vallberg, K. C. Nicolaou, An-
gew. Chem. 1997, 109, 170; Angew. Chem. Int. Ed. Engl. 1997,
36, 166–168; d) R. H. Grubbs, S. Chang, Tetrahedron 1998, 54,
4413–4450; e) S. F. Martin, J. M. Humphrey, A. Ali, M. C.
Hillier, J. Am. Chem. Soc. 1999, 121, 866–867; f) M. E. Maier,
Angew. Chem. 2000, 112, 2153; Angew. Chem. Int. Ed. 2000,
39, 2073–2077; g) J. M. Humphrey, A. Liao, T. Rein, Y.-L.
Wong, H.-J. Chen, A. K. Courtney, S. F. Martin, J. Am. Chem.
Soc. 2002, 124, 8584–8592; h) J. Prunet, Angew. Chem. 2003,
115, 2932; Angew. Chem. Int. Ed. 2003, 42, 2826–2830; i) M. L.
Ferguson, D. J. O’Leary, R. H. Grubbs, Org. Synth. 2003, 80,
85–88; j) M. W. B. Pfeiffer, A. J. Phillips, J. Am. Chem. Soc.
2005, 127, 5334–5335; k) A. Gradillas, J. Pèrez-Castells, Angew.
Chem. 2006, 118, 6232; Angew. Chem. Int. Ed. 2006, 45, 6086–
6100; l) K. C. Majumdar, H. Rahaman, B. Roy, Curr. Org.
Chem. 2007, 11, 1339–1365; m) D. E. White, I. C. Stewart,
R. H. Grubbs, B. M. Stoltz, J. Am. Chem. Soc. 2008, 130, 810–
811; n) J. E. Enquist, B. M. Stoltz, Nature 2008, 453, 1228–
1231; o) H. M. A. Hassan, Chem. Commun. 2010, 46, 9100–
9106; p) J. Prunet, Eur. J. Org. Chem. 2011, 3634–3647; q) M.
1
16: E isomer was obtained as an off-white solid (87%). H NMR
(400 MHz, CDCl3): δ = 7.50 (d, J = 8.7 Hz, 1 H), 7.08 (br. s, 1 H,
NH), 6.93 (d, J = 2.9 Hz, 1 H), 6.80 (dd, J = 2.9, 8.8 Hz, 1 H),
6.48 (d, J = 15.8 Hz, 1 H), 6.03 (dt, J = 6.6, 15.7 Hz, 1 H), 3.82 (s,
3 H), 2.48–2.40 (m, 2 H), 2.29 (q, J = 6.2 Hz, 2 H), 1.85–1.18 (m,
12 H) ppm. 13C NMR (400 MHz, CDCl3): δ = 172.0, 157.8, 134.6,
134.3, 127.1, 127.0, 125.7, 113.2, 111.9, 55.6, 37.5, 30.8, 27.4, 26.7,
25.9, 25.8, 25.7, 24.8 ppm. C18H25NO2 (287.40): calcd. C 75.22, H
8.77, N 4.87; found C 75.20, H 8.76, N 4.87.
Computational Details: Density functional calculations were per-
formed on all the systems with the Gaussian09 set of programs.[25]
BP86 was used as a functional and gradient corrections were taken
from the work of Becke and Perdew.[26–28] The electronic configura-
tion of the molecular systems was described by the split-valence
6
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0