NꢀN doublebond, asa directing group, israrelystudied in
the CꢀH activation process.6
dehydrogenation of aryl amines, etc.12 However, the
above-mentioned methodologies usually suffer from a
narrow substrate scope and complex byproducts. Espe-
cially, it is worth noting that synthesis of the steric ortho-
substituted azo compounds and their further transforma-
tions are often ignored. To make up for this deficiency, a
transition metal-catalyzed CꢀH functionlization strategy
with one-step transformation and simple operation is
highly desirable.
It is well-known that indazole usually bears a benzo
five-membered heterocycle unit, which has been broadly
studied for its unique biological activity in medicinal
chemistry (Figure 1).13 Pursuing our interests in CꢀH
activation,14 herein we first report a novel approach to
the acylated azobenzenes through Pd-catalyzed acylation
of azobenzenes with aldehydes via azo-directed CꢀH
activation. It is important to note that the obtained
acylated azobenzenes can easily be converted into the
corresponding indazoles via an intramolecular reductive
cyclization process in nearly quantitative yields.
Figure 1. Representative biologically active indazoles as liver
X receptor agonist.13b
Aromatic azo compounds have been extensively inves-
tigated for their photochromic properties, which were
widely used as a light triggered switch in surface-modified
materials,7 polymers,8 molecular machines,9 and protein
probes.10 Additionally, azobenzene also frequently ap-
pears in food additives, industrial dyes, and nonlinear
optical devices.11 To date, many methodologies have been
established for the synthesis of azobenzene and its deriva-
tives, such as the coupling of diazo salts with aromatic
compounds, thereduction ofnitrocompoundsby reducing
agents, the transition-metal-catalyzed aerobic oxidative
Our initial studies focused on the model reaction of
azobenzene (1a) and benzaldehyde (2a). The optimization
of a Pd source and oxidant are summarized in Table 1.
Considering the stability of 1a, freshly distilled 1,2-
dichloroethane (DCE) and dried tert-butyl hydroperoxide
(TBHP) were necessary in the model reaction. We found
that the combination of azobenzene (1a, 1.0 equiv) with
benzaldehyde (2a, 1.1 equiv), TBHP (2.0 equiv), and Pd-
(PPh3)2Cl2 (5.0 mol %) in DCE at 80 °C for 12 h generated
the acylated product 3a in 26% yield (Table 1, entry 1).
However, Pd(PPh3)4 did not work in the model reaction
(Table 1, entry 2). When PdCl2 was used as the catalyst in
the reaction, 3a was obtained in 42% yield (Table 1, entry 3).
Meanwhile, acylation also proceeded in comparable
yield and efficiency in the presence of Pd(CH3CN)2Cl2
(Table 1, entry 4 vs 3). As expected, Pd(OCOCF3)2 gave 3a
in 69% yield (Table 1, entry 5). Gratifyingly, Pd(OAc)2
showed excellent activity among the tested Pd sources
(Table 1, entry 6). Further exploration of some commer-
cially available oxidants in the model reaction indicated
that dried TBHP was superior to the others, as also shown
in Table 1. When TBHP (70% in H2O) was used, 3a was
isolated in 56% yield (Table 1, entry 7). It is likely that the
existing H2O may be responsible for the partial decom-
position of azobenzene, leading to the lower yield of 3a.
Other oxidants, such as R,R-dimethylbenzyl hydroperoxide
(DBHP), di-tert-butyl peroxide (DTBP), dicumyl peroxide
(DCP), 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ), and
tert-butyl perbenzoate (TBPB), generated the desired
product 3a in 23ꢀ66% yields (Table 1, entries 8ꢀ12). It is
noteworthy to mention that inorganic oxidant (NH4)2S2O8
(5) (a) Boele, M. D. K.; Strijdonck, G. P. F.; Vries, A. H. M.; Kamer,
P. C. J.; Vries, J. G.; Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2002, 124,
1586. (b) Wang, D. H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010,
327, 315. (c) Lu, Y.; Wang, D. H.; Engle, K. M.; Yu, J.-Q. J. Am. Chem.
Soc. 2010, 132, 5916. (d) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem.
Soc. 2010, 132, 3680. (e) Shi, B.-F.; Zhang, Y. H.; Lam, J. K.; Wang,
D. H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460. (f) Garcia-Rubia, A.;
Fernandez-Ibanez, M. A.; Arrayas, R. G.; Carretero, J. C. Chem.;Eur.
J. 2011, 17, 3567. (g) Patureau, F. W.; Besset, T.; Glorius, F. Angew.
Chem., Int. Ed. 2011, 50, 1064. (h) Dai, H. X.; Stepan, A. F.; Plummer,
M. S.; Zhang, Y. H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7222. (i)
Garca-Rubia, A.; Urones, B.; Arrays, R. G.; Carretero, J. C. Angew.
Chem., Int. Ed. 2011, 50, 10927. (j) Huang, C. H.; Chattopadhyay, B.;
Gevorgyan, V. J. Am. Chem. Soc. 2011, 133, 12406. (k) Padala, K.;
Jeganmohan, M. Org. Lett. 2011, 13, 6144. (l) Mewald, M.; Schiffner,
J. A.; Oestreich, M. Angew. Chem., Int. Ed. 2012, 124, 1797. (m) Mewald,
M.; Schiffner, J. A.; Oestreich, M. Angew. Chem., Int. Ed. 2012, 51, 1763.
(n) Wang, C. M.; Chen, H.; Wang, Z. F.; Chen, J.; Huang, Y. Angew.
Chem., Int. Ed. 2012, 51, 7242.
(6) (a) Fahey, D. R. J. Chem. Soc., Chem. Commun. 1970, 417.
(b) Fahey, D. R. J. Organomet. Chem. 1971, 27, 283. (c) Dick, A. R.;
Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.
(7) Ferri, V.; Elbing, M.; Pace, G.; Dickey, M. D.; Zharnikov, M.;
Samori, P.; Mayor, M.; Rampi, M. A. Angew. Chem., Int. Ed. 2008, 47,
3407.
(8) (a) Puntoriero, F.; Ceroni, P.; Balzani, V.; Bergamini, G.; Voegtle,
F. J. Am. Chem. Soc. 2007, 129, 10714. (b) Parker, R. M.; Gates, J. C.;
Rogers, H. L.; Smith, P. G. R.; Grossel, M. C. J. Mater. Chem. 2010, 20,
9118.
(9) (a) Murakami, H.; Kawabuchi, A.; Kotoo, K.; Kunitake, M.;
Nakashima, N. J. Am. Chem. Soc. 1997, 119, 7605. (b) Muraoka, T.;
Kinbara, K.; Aida, T. Nature 2006, 440, 512.
(10) (a) Banghart, M. R.; Mourot, A.; Fortin, D. L.; Yao, J. Z.;
Kramer, R. H.; Trauner, D. Angew. Chem., Int. Ed. 2009, 48, 9097. (b)
Kim, Y.; Phillips, J. A.; Liu, H.; Kang, H.; Tan, W. Proc. Natl. Acad. Sci.
U.S.A. 2009, 106, 6489.
(11) (a) Chang, C.-W.; Lu, Y.-C.; Wang, T.-T.; Diau, E. W.-G.
J. Am. Chem. Soc. 2004, 126, 10109. (b) Patai, S. The Chemistry of the
Hydrazo, Azo and Azoxy Groups, Vol. 2; Wiley: Chichester, 1997; pp
729ꢀ730.
(13) (a) Schmidt, A.; Beutler, A.; Snovydovych, B. Eur. J. Org. Chem.
2008, 4073. (b) Steffan, R. J.; Matelan, E. M.; Bowen, S. M.; Ullrich,
J. W.; Wrobel, J. E.; Zamaratski, E.; Kruger, L.; Olsen Hedemyr, A. L.;
Cheng, A.; Hansson, T.; Unwalla, R. J.; Miller, C. P.; Rhonnstad, P. P.
U.S. Pat. Appl. Publ. US 2006030612 A1 20060209, 2006; Chem. Abstr.
2006, 144, 212770.
(14) (a) Li, C.; Wang, L.; Li, P.; Zhou, W. Chem.;Eur. J. 2011, 17,
10208. (b) Li, C.; Wang, L.; Li, P.; Yang, J.; Wang, L. Chem. Commun.
2012, 48, 4214. (c) Zhou, W.; Li, H.; Wang, L. Org. Lett. 2011, 14, 4594.
(12) (a) Barbero, M.; Degani, I.; Dughera, S.; Fochi, R.; Perracino, P.
Synthesis 1998, 1235. (b) Wenkert, K.; Wickberg, B. J. Am. Chem. Soc.
1962, 84, 4914. (c) Goldstein, S. L.; McNelis, E. J. Org. Chem. 1973, 38,
183. (d) Krageloh, K.; Anderson, G. H.; Stang, P. J. J. Am. Chem. Soc.
1984, 106, 6015. (e) Zhang, C.; Jiao, N. Angew. Chem., Int. Ed. 2010, 49,
6174. (f) Grirrane, A.; Corma, A.; Garca, H. Science 2008, 322, 1661.
Org. Lett., Vol. 15, No. 3, 2013
621