ChemComm
Communication
Table 2 Device performance for device A and device B
Efficiency (ZLb/cd Aꢀ1; Zpc/lm Wꢀ1; ZExtd/%)
CIE coordinates (x, y)e
Devicea
Conc.
Max.
@ 1000 cd mꢀ2
@ 10 000 cd mꢀ2
Max.
@ 1000 cd mꢀ2
@ 10 000 cd mꢀ2
A
B
1%
13%
30.2; 14.6; 8.6
66.7; 34.1; 18.2
29.8; 13.8; 8.5
65.1; 30.7; 17.7
17.1; 5.0; 4.9
48.5; 17.2; 13.2
(0.234, 0.650)
(0.282, 0.657)
(0.234, 0.650)
(0.304, 0.647)
(0.238, 0.639)
(0.296, 0.561)
a
b
c
d
ITO/TaPc (70 nm)/mCP: 1 or 3 (x%, 30 nm)/TmPyPB (40 nm)/LiF (0.5 nm)/Al (100 nm). Current efficiency. Power efficiency. External
e
quantum efficiency. Commission Internationale d’Eclairage chromaticity coordinates.
O4N4C4N ligand. To the best of our knowledge, device B is the best
green-emitting OLED using platinum(II) emitting material, taking
into account the maximum device efficiency (ZL: 66.7 cd Aꢀ1
;
Z
Ext: 18.2%), colour purity (CIE: 0.282, 0.657) and efficiency
stability (2.4% roll-off@1000 cd mꢀ2).
This work was partially supported by the Innovation and Tech-
nology Commission of the HKSAR Government (GHP/043/10),
Research Grants Council of Hong Kong SAR (HKU 7008/09P) and
Theme-Based Research Scheme (T23-713/11), National Natural
Science Foundation of China/Research Grants Council Joint
Research Scheme [N_HKU 752/08], CAS-Croucher Funding Scheme
for Joint Laboratories. This work was also supported by Guangdong
Special Project of the Introduction of Innovative R&D Teams, China
and Guangdong Aglaia Optoelectronic Materials Co., Ltd.
Fig. 3 Comparisons between PL and EL spectra (left – device A; right – device B).
developed and the CIEx increased. This is attributed to excimer
emission from 1. As a result, the color of the devices gradually
shifted from green to greenish-yellow upon an increase in the
dopant concentration of 1 and the maximum device efficiency
dropped to 26.9 cd Aꢀ1 at 4% dopant concentration.
Notes and references
On the other hand, the maximum efficiency of the devices
fabricated with 3 increased with dopant concentration up to a high
dopant level of 13% (Fig. 4). No extra emitting component or
significant shift in CIE was observed. These data show that excimer
formation is successfully suppressed by the norbornane group. Green
emission with CIE coordinates of (0.304, 0.647) has been obtained at
1000 cd mꢀ2. Besides device efficiency and color, the devices fabri-
cated with 3 showed excellent performance in efficiency roll-off. Only
2.4% roll-off (65.1 cd Aꢀ1) was observed at 1000 for the device B.
Phosphorescent platinum(II) complexes have been reported
for white OLED (WOLED) fabricated with one single emitter.
Excimer emission from Pt(II) complexes can be obtained even
at a low dopant concentration of 3%.4,12,14 Nevertheless, this
characteristic feature of Pt(II) complexes could be detrimental
to RGB panel application as the color purity, device efficiency
and efficiency stability can also be affected at high dopant
concentration. However, low dopant concentration is not desirable
for industry/practical application. In this work, this dilemma has
been resolved by incorporation of the norbornane group to the
1 (a) S.-W. Lai and C.-M. Che, Top. Curr. Chem., 2004, 241, 27;
(b) A. F. Rausch, H. H. H. Homeier and H. Yersin, Top. Organomet.
Chem., 2010, 193.
2 (a) I. Eryazici, C. N. Moorefield and G. R. Newkome, Chem. Rev.,
2008, 108, 1834; (b) K. M.-C. Wong and V. W.-W. Yam, Acc. Chem.
Res., 2011, 44, 424; (c) E. Baggaley, J. A. Weinstein and J. A. G.
Williams, Coord. Chem. Rev., 2012, 256, 1762.
3 (a) H.-F. Xiang, S.-W. Lai, P. T. Lai and C.-M. Che, Highly Efficient
OLEDs with Phosphorescent Materials, ed. H. Yersin, Wiley-VCH,
Weinheim, 2008, p. 259; (b) L. Murphy and J. A. G. Williams, Top.
Organomet. Chem., 2010, 28, 75; (c) L. Xiao, Z. Chen, B. Qu, J. Luo,
S. Kong, Q. Gong and J. Kido, Adv. Mater., 2011, 23, 926.
4 (a) V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander,
P. I. Djurovich, B. W. D’Andrade, C. Adachi, S. R. Forrest and
M. E. Thompson, New J. Chem., 2002, 26, 1171; (b) E. L. Williams,
K. Haavisto, J. Li and G. E. Jabbour, Adv. Mater., 2007, 19, 197;
(c) G. Zhou, W.-Y. Wong and X. Yang, Chem.–Asian J., 2011, 6, 1706.
5 (a) W. Lu, B.-X. Mi, M. C. W. Chan, Z. Hui, C.-M. Che, N. Zhu and
S.-T. Lee, J. Am. Chem. Soc., 2004, 126, 4958; (b) S. C. F. Kui, I. H.
T. Sham, C. C. C. Cheung, C.-W. Ma, B. Yan, N. Zhu, C.-M. Che and
W.-F. Fu, Chem.–Eur. J., 2007, 13, 417.
6 (a) J. A. G. Williams, A. Beeby, E. S. Davies, J. A. Weinstein and
C. Wilson, Inorg. Chem., 2003, 42, 8609; (b) W. Sotoyama, T. Satoh,
N. Sawatari and H. Inoue, Appl. Phys. Lett., 2005, 86, 153505.
7 Y.-Y. Lin, S.-C. Chan, M. C. W. Chan, Y.-J. Hou, N. Zhu, C.-M. Che,
Y. Liu and Y. Wang, Chem.–Eur. J., 2003, 9, 1263.
8 C.-M. Che, C.-C. Kwok, S.-W. Lai, A. F. Rausch, W. J. Finkenzeller,
N. Zhu and H. Yersin, Chem.–Eur. J., 2010, 16, 233.
9 H.-F. Xiang, S.-C. Chan, K. K.-Y. Wu, C.-M. Che and P. T. Lai, Chem.
Commun., 2005, 1408.
10 D. A. K. Vezzu, J. C. Deaton, J. S. Jones, L. Bartolotti, C. F. Harris,
A. P. Marchetti, M. Kondakova, R. D. Pike and S. Huo, Inorg. Chem.,
2010, 49, 5107.
11 K. Li, X. Guan, C.-W. Ma, W. Lu, Y. Chen and C.-M. Che, Chem.
Commun., 2011, 47, 9075.
12 S. C. F. Kui, P. K. Chow, G. S. M. Tong, S.-L. Lai, G. Cheng, C.-C. Kwok,
K.-H. Low, M. Y. Ko and C.-M. Che, Chem.–Eur. J., 2013, 19, 69.
13 G.-J. Zhou, W.-Y. Wong, B. Yao, Z. Xie and L. Wang, J. Mater. Chem.,
2008, 18, 1799.
14 (a) G. Zhou, Q. Wang, C.-L. Ho, W.-Y. Wong, D. Ma and L. Wang, Chem.
Commun., 2009, 3574; (b) G. Zhou, Q. Wang, X. Wang, C.-L. Ho,
W.-Y. Wong, D. Ma, L. Wang and Z. Lin, J. Mater. Chem., 2010, 20, 7472.
Fig. 4 Efficiency of the device fabricated with 3.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 1497--1499 1499