ORGANIC
LETTERS
2013
Vol. 15, No. 4
898–901
Iron-catalyzed Benzannulation Reactions
of 2‑Alkylbenzaldehydes and Alkynes
Leading to Naphthalene Derivatives
Shifa Zhu,* Yelin Xiao,† Zhengjiang Guo,† and Huanfeng Jiang
School of Chemistry and Chemical Engineering, South China University of Technology,
Guangzhou 510640, P. R. China
Received January 6, 2013
ABSTRACT
An efficient and practical method for the synthesis of naphthalene derivatives via Fe(III)-catalyzed benzannulation of 2-(2-oxoethyl)-benzaldehydes
and alkynes has been developed. The system holds the advantages of cheap catalysts, wide substrate scope, and mild reaction conditions.
Aromatic compounds are one of the most widely dis-
tributed classes of organic compounds in nature.1 Many
applications can be found in the fields of coal chemical
industry, medicinal chemistry, and material science.2
Among different aromatic compounds, naphthalene de-
rivatives have attracted much attention in the design of chiral
catalysts3 and advanced functional materials.2e,f There-
fore, methods for the synthesis of naphthalene derivatives,
especially the polysubstituted ones, is of great importance.
Lewis acid-catalyzed benzannulations of enynals with
unsaturated compounds (alkynes, alkenes, and enols) have
been proven to be one of the most powerful and reliable
approaches to naphthalene derivatives. For example,
Yamamoto and co-workers had developed a variety of
transition metal-catalyzed benzannulations of enynals with
alkynes or enols leading to naphthalenes.4aꢀd Recently, we
reported an efficient route to polysubstituted tetrahydro-
naphthols via silver-catalyzed [4 þ 2] cyclization of 2-alkyl-
benzaldehydes and alkenes5 (Scheme 1, eq 1). It is supposed
that the reaction proceeded via DielsꢀAlder reactions of
alkenes with benzo-1,3-butadienols (also called hydroxy-o-
quinodimethanes or o-QDMs), which was generated from
the enolization of 2-(2-oxoethyl)-benzaldehydes. Inspired
by these results, also as part of our continuous efforts to
† These authors contributed equally to this work.
(1) (a) Carmona, M.; Zamarro, M. T.; Blazquez, B.; Durante-
ꢀ
ꢀ
ꢀ
Rodrı
J. L.; Dı
Chem. Rev. 2001, 101, 1115.
´
guez, G.; Juarez, J. F.; Valderrama, J. A.; Barragan, M. J. L.; Garcı
´
´
a,
az, E. Microbiol. Mol. Biol. Rev. 2009, 73, 71. (b) Schleyer, P. v. R.
(2) (a) Fang, X.-L.; Tang, R. Y.; Zhang, X.-G.; Zhong, P.; Deng,
C.-L.; Li, J.-H. J. Organomet. Chem. 2011, 696, 352. (b) Meyers, A. I.;
Willemsen, J. J. Tetrahedron Lett. 1996, 37, 791. (c) Medarde, M.;
Ramos, A. C.; Caballero, E.; Lopez, J. L. Tetrahedron Lett. 1996, 37,
2663. (d) Katritzky, A. R.; Zhang, G.; Xie, L. J. Org. Chem. 1997, 62,
721. (e) Svoboda, J.; Novotna, V.; Kozmik, V.; Glogarova, M.; Weissflog,
W.; Diele, S.; Pelzl, G. J. Mater. Chem. 2003, 13, 2104. (f) Reddy, R. A.;
Baumeister, U.; Keith, C.; Tschierske, C. J. Mater. Chem. 2007, 17, 62. (g)
Barrett, A. G. M.; Blaney, F.; Campbell, A. D.; Hamprecht, D.; Meyer, T.;
White, A. J. P.; Witty, D.; Williams, D. J. J. Org. Chem. 2002, 67, 2735. (h)
Anthony, J. E. Angew. Chem., Int. Ed. 2008, 47, 452. (i) Katritzky, A. R.; Li,
J.; Xie, L. Tetrahedron 1999, 55, 8263. (j) Ward, R. S. Nat. Prod. Rep. 1995,
(4) (a) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem.
Soc. 2003, 125, 10921. (b) Asao, N.; Aikawa, H. J. Org. Chem. 2006, 71,
5249. (c) Asao, N.; Sato, K.; Menggenbateer; Yamamoto, Y. J. Org.
Chem. 2005, 70, 3682. (d) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am.
Chem. Soc. 2004, 126, 7458. (e) Fan, X.-L.; Tang, R.-Y.; Zhang, X.-G.;
Zhong, P.; Deng, C.-L.; Li, J.-H. J. Organomet. Chem. 2011, 696, 352. (f)
Zhao, X.; Zhang, X.-G.; Tang, R.-Y.; Deng, C.-L.; Li, J.-H. Eur. J. Org.
Chem. 2010, 22, 4211. (g) Liang, Y.; Jiang, X.; Yu, Z.-X. Org. Lett. 2009,
11, 5302. (h) Liu, L.; Wei, L.; Zhang, J. Adv. Synth. Catal. 2010, 352,
1920. (i) Chen, Y.; Chen, M.; Liu, Y. Angew. Chem., Int. Ed. 2012, 51,
6181.
€
12, 183. (k) Shore, N. E. Chem. Rev. 1988, 88, 1081. (l) Dotz, K. H.;
Tomuschat, P. Chem. Soc. Rev. 1999, 28, 187. (m) Modern Arene Chemistry;
Astruc, D., Ed.; Wiley-VCH: Weinheim, 2002. (n) Handbook of Functionalized
Organometallics; Knochel, P., Ed.; Wiley-VCH: Weinheim, 2005. (o) Mulvey,
R. E.; Mongin, F.; Uchiyama, M.; Kondo, Y. Angew. Chem., Int. Ed. 2007, 46,
3802. (p) Mal, D.; Pahari, P. Chem. Rev. 2007, 107, 1892. (q) Saito, S.;
Yamamoto, Y. Chem. Rev. 2000, 100, 2901. (r) Yamamoto, Y. Curr. Org.
Chem. 2005, 9, 503. (s) Galan, B. R.; Rovis, T. Angew. Chem., Int. Ed. 2009,
48, 2830.
(3) For a recent review of BINOL-based catalysts, see: Shibasaki, M.;
Matsunaga, S. BINOL. In Privileged Chiral Ligandsand Catalysts; Zhou,
Q.-L., Ed.; Wiley: New York, 2011; pp 295ꢀ332.
(5) Zhu, S. F.; Liang, R. X.; Jiang, H. F.; Wu, W. Q. Angew. Chem.,
Int. Ed. 2012, 51, 10861.
r
10.1021/ol4000394
Published on Web 01/29/2013
2013 American Chemical Society