Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC08869D
COMMUNICATION
Journal Name
that the L-Trp amino group undergoes a rapid solvent 4. J. B. Broderick, B. R. Duffus, K. S. Duschene and E. M.
exchange during catalysis. In NosL crystal structure, the L-Trp Shepard, Chem Rev, 2014, 114, 4229-4317.
amino group forms a hydrogen bond with Tyr90, which could 5. B. J. Landgraf, E. L. McCarthy and S. J. Booker, Annu Rev
possibly mediate hydrogen exchange between solvent and the Biochem, 2016.
L-Trp amino (Fig. S13, ESI†). To test this hypothesis, we 6. Y. Nicolet, L. Zeppieri, P. Amara and J. C. Fontecilla-Camps,
replaced Tyr90 with a Phe, and the resulting Y90F mutant was Angew Chem Int Ed Engl, 2014, 53, 11840-11844.
used to run a reaction in highly enriched D2O buffer same to 7. X. Ji, Y. Li, W. Ding and Q. Zhang, Angew Chem Int Ed Engl,
that used for the wild type enzyme. LC-HRMS analysis of the 2015, 54, 9021-9024.
reaction mixture showed that, in stark contrast to the wild 8. D. M. Bhandari, H. Xu, Y. Nicolet, J. C. Fontecilla-Camps and
type NosL (Fig. 4a), dAdoH produced by the mutant enzyme T. P. Begley, Biochemistry, 2015, 54, 4767-4769.
was predominately singly deuterated (Fig. 4c). The catalytic 9. X. J. Ji, Y. Z. Li, Y. L. Jia, W. Ding and Q. Zhang, Angew Chem
efficiency of the Y90F mutant is only about 2-fold lower than Int Edit, 2016, 55, 3334-3337.
that of the wild type enzyme (Fig. S14, ESI†), suggesꢀng that 10. X. Ji, Y. Li, L. Xie, H. Lu, W. Ding and Q. Zhang, Angew Chem
the mutant folds in the same way as the wild type enzyme. Int Ed Engl, 2016, 55, 11845-11848.
These results demonstrate that the solvent exchange 11. G. Sicoli, J. M. Mouesca, L. Zeppieri, P. Amara, L. Martin, A. L.
mechanism is significantly, if not completely, abolished in the
Y90F mutant, supporting the essential role of Tyr90 in
Barra, J. C. Fontecilla-Camps, S. Gambarelli and Y. Nicolet,
Science, 2016, 351, 1320-1323.
mediating the hydrogen exchange between solvent and the L- 12. J. M. Kuchenreuther, W. K. Myers, T. A. Stich, S. J. George, Y.
Trp amino group. In NosL active site, no water molecule was
found around the phenol moiety of Tyr90 and L-Trp amino
Nejatyjahromy, J. R. Swartz and R. D. Britt, Science, 2013,
342, 472-475.
group.6 Our analysis thus suggests that generation of
1
13. B. R. Duffus, S. Ghose, J. W. Peters and J. B. Broderick, J Am
Chem Soc, 2014, 136, 13086-13089.
involves multiple rounds of solvent molecules move in and out
of the enzyme active site. It remains to be seen whether the 14. P. Dinis, D. L. Suess, S. J. Fox, J. E. Harmer, R. C. Driesener, L.
dynamic solvent exchange process contributes to the reaction
thermodynamics.
De La Paz, J. R. Swartz, J. W. Essex, R. D. Britt and P. L. Roach,
Proc Natl Acad Sci U S A, 2015, 112, 1362-1367.
In summary, by using a combination of model chemical 15. A. Pagnier, L. Martin, L. Zeppieri, Y. Nicolet and J. C.
study and DFT calculations, this investigation clearly
demonstrates that cleavage of the Cα-Cβ of the nitrogen-
Fontecilla-Camps, Proc Natl Acad Sci U S A, 2016, 113, 104-
109.
centered tryptophanyl radical
favorable than that of the Cα-C cleavage. We also estimated
the rate constants for the formation and fragmentation of
NosL catalysis, and showed that a key Tyr residue mediates
1 is thermodynamically more 16. N. C. Martinez-Gomez, M. Robers and D. M. Downs, J Biol
Chem, 2004, 279, 40505-40510.
in 17. M. R. Challand, F. T. Martins and P. L. Roach, J Biol Chem,
2010, 285, 5240-5248.
1
rapid hydrogen exchange between solvent and the L-Trp 18. L. Decamps, B. Philmus, A. Benjdia, R. White, T. P. Begley and
amino group. Our study demonstrates the remarkable role O. Berteau, J Am Chem Soc, 2012, 134, 18173-18176.
that NosL plays in modulating the reactivity of radical 19. B. Philmus, L. Decamps, O. Berteau and T. P. Begley, J Am
intermediates, indicating that the unusual catalytic Chem Soc, 2015, 137, 5406-5413.
promiscuity of NosL is likely a compromise to achieve an 20. W. Ding, X. Ji, Y. Li and Q. Zhang, Front Chem, 2016,
energetically highly demanding reaction. Similar scenarios of 21. G. Lin and L. Li, Angew Chem Int Ed Engl, 2013, 52, 5594-
4, 27.
catalytic promiscuity likely apply to other radical-mediated
enzymatic reactions.
5598.
22. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J Phys Chem B,
2009, 113, 6378-6396.
We thank Prof. Tadhg P. Begley (Texas A&M University) for
helpful discussions on NosL kinetics. This work was supported 23. X. Ji, W. Q. Liu, S. Yuan, Y. Yin, W. Ding and Q. Zhang, Chem
by grants from Fujian Agriculture and Forestry University and Commun (Camb), 2016, 52, 10555-10558.
from Fudan University, from National Natural Science 24. a. D G Truhlar and R. E. Wyatt, Annu Rev Phys Chem, 1976,
Foundation of China (1500028 to Q.Z.), and from the National 27, 1-43.
Key Research and Development Program (2016 Y F A0501302 25. A. M. Kuznetsov and J. Ulstrup, Can J Chem, 1999, 77, 1085-
to Q.Z.).
1096.
26. Z. D. Nagel and J. P. Klinman, Nat Chem Biol, 2009, 5, 543-
Notes and references
550.
27. R. Rohac, P. Amara, A. Benjdia, L. Martin, P. Ruffie, A. Favier,
O. Berteau, J. M. Mouesca, J. C. Fontecilla-Camps and Y.
1. Y. Yu, L. Duan, Q. Zhang, R. Liao, Y. Ding, H. Pan, E. Wendt-
Pienkowski, G. Tang, B. Shen and W. Liu, ACS Chem. Biol.,
Nicolet, Nat Chem, 2016, 8, 491-500.
2009,
2. Q. Zhang, Y. Li, D. Chen, Y. Yu, L. Duan, B. Shen and W. Liu,
Nat. Chem. Biol., 2011, , 154-160.
4, 855-864.
28. A. R. Jones, J. Rentergent, N. S. Scrutton and S. Hay,
Chemistry, 2015, 21, 8826-8831.
7
3. P. A. Frey, A. D. Hegeman and F. J. Ruzicka, Crit. Rev.
Biochem. Mol. Biol., 2008, 43, 63-88.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins