ORGANIC
LETTERS
2012
Vol. 14, No. 23
6100–6103
Lewis Acid Catalyzed Intramolecular
Condensation of Ynol Ether-Acetals.
Synthesis of Alkoxycycloalkene
Carboxylates
Vincent Tran and Thomas G. Minehan*
Department of Chemistry and Biochemistry, California State University,
Northridge 18111 Nordhoff Street, Northridge, California 91330, United States
Received November 3, 2012
ABSTRACT
Treatment of ynol ether-tethered dialkyl acetals with catalytic quantities of scandium triflate in CH3CN gives rise to five-, six-, and seven-membered
alkoxycycloalkene carboxylates in good to excellent yields. Tri- and tetrasubstituted carbocyclic and heterocyclic alkenes may be formed by this
method, and the products obtained may serve as useful intermediates for natural product synthesis.
Alkoxycycloalkene carboxylates are highly useful
starting materials for organic synthesis (Figure 1).
Stereoselective introduction of carbon substituents
β to the ester functional group may be accomplished
by allylic substitution or Michael addition reactions,
as shown by Villieras et al.1 Ogasawara has prepared
the nitraria alkaloids (þ)-nitramine, (þ)-isonitramine, and
(ꢀ)-sibirine from 2-carboethoxy-2-cyclohexen-1-ol.2 Simi-
larly, Iwabuchi’s recent synthesis of idesolide commences
from 2-carbomethoxy-2-cyclohexen-1-ol.3 Lupton has
also accomplished an elegant total synthesis of 7-deoxylo-
ganin from 2-carboethoxy-2-cyclopenten-1-ol.4 In all cases,
the hydroxycycloalkene carboxylate starting material is
prepared in moderate yields by the HornerꢀWadsworthꢀ
Emmons reaction of an appropriate dialdehyde with
trialkyl phosphonacetate.5 Since the efficiency of this proto-
col is often low, the development of an alternative method for
the preparation of cycloalkenol carboxylates of varying ring
sizes would clearly be of value for natural product synthesis.
Here we report our efforts toward the realization of this goal
and detail a novel Lewis acid catalyzed condensation of ynol
ether-acetals that yields alkoxycycloalkene carboxylates in
high yields.
Electron-rich alkynes, such as ynamines and ynol ethers,
are functional groups that possess significant potential in
organic chemistry for the formation of CꢀC bonds.6 Due to
their linear geometry, alkynyl ethers are relatively unhindered
(5) (a) Brady, W. T.; Giang, Y. F. J. Org. Chem. 1985, 50, 5177. (b)
Graff, M.; Al Dilaimi, A.; Seguineau, P.; Rambaud, M.; Villieras, J.
Tetrahedron Lett. 1986, 27, 1577.
(6) For reviews of the chemistry of ynol ethers and the methods for
the synthesis of ynol ethers, see: (a) Brandsma, L.; Bos, H. J.; Arens, J. F.
In The Chemistry of Acetylenes; Viehe, H. G., Ed.; Marcel Dekker: New
York, 1969, pp 751ꢀ860. (b) Stang, P. J.; Zhdankin, V. V. In The
Chemistry of Triple-Bonded Functional Groups; Patai, S., Ed.; John Wiley
& Sons: New York, 1994; Chapter 19. For a review of the chemistry of
ynamines and ynamides, see: (a) DeKorver, K. A.; Li, H.; Lohse, A. G.;
Hayashi, H.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064–
5106. (b) Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.;
Wei, L. L. Tetrahedron 2001, 57, 7575–7606. (b) Mulder, J. A.; Kurtz,
K. C. M.; Hsung, R. P. Synlett 2003, 10, 1379–1390. (c) Al-Rashid, Z. F.;
Hsung, R. P. Org. Lett. 2008, 10, 661.
(1) (a) Dambrin, V.; Villieras, M.; Janvier, P.; Toupet, L.; Amri, H.;
Lebreton, J.; Villieras, J. Tetrahedron 2001, 57, 2155. (b) Amri, H.;
Villieras, J. Tetrahedron Lett. 1987, 28, 5521. (c) Amri, H.; Rambaud,
M.; Villieras, J. Tetrahedron 1990, 46, 3535. (d) Amri, H.; Rambaud, M.;
Villieras, J. J. Organomet. Chem. 1986, 308, C27. (e) Dambrin, V.;
Villieras, M.; Moreau, C.; Amri, H.; Toupet, L.; Villieras, J. Tetrahedron
Lett. 1996, 37, 6323.
(2) Yamane, T.; Ogasawara, K. Synlett 1996, 925.
(3) Yamakoshi, H.; Shibuya, M.; Tomizawa, M.; Osada, Y.; Kanoh,
N.; Iwabuchi, Y. Org. Lett. 2010, 12, 980.
(4) Candish, L.; Lupton, D. W. Org. Lett. 2010, 12, 4836.
r
10.1021/ol303026v
Published on Web 11/21/2012
2012 American Chemical Society