644
Beena et al. / Bioorg. Med. Chem. Lett. 23 (2013) 641–645
120
100
80
60
40
20
0
pathways namely SPLET and HAT mechanisms in ethanol and chlo-
roform, respectively, in DPPH assay. While in ABTS method, the
reaction between ABTSÅ+ and Schiff bases involves electron transfer
followed by proton transfer (ET–PT) mechanism.
4k-4r
5k-5r
6k-6r
Acknowledgments
k
l
m
n
o
p
q
r
Asc
D.S.R. thanks Council of Scientific and Industrial Research (CSIR)
[No. 02(0049)/12/EMR-II] New Delhi, India for financial support.
Beena and D.K. are thankful to CSIR for the award of senior re-
search fellowship. Authors are thankful to CIF-USIC, University of
Delhi, Delhi for spectrophotometer and NMR spectral data, RSIC,
CDRI, Lucknow for mass.
acid
Figure 7. Percentage inhibition by ABTS radical cation method.
compounds (4k–4r, 5k–5r and 6k–6r) was also carried out in non-
polar solvent chloroform (Fig. 6). From the activity results, a similar
structure activity relationship was observed in both the solvents
and the IC50 values of the compounds measured in chloroform
were also comparable to those in ethanol (slightly better in case
of ethanol). In ethanol, ionization of phenolic compounds may take
place due to high dielectric constant of ethanol (ca. 24.55). The cor-
responding phenoxide ion, is much strong electron donor than
PhOH and can transfer one electron to the DPPH free radical rap-
idly. Thus the partial dissociation of phenols in ethanol and rela-
tively high reduction potential of DPPH free radical suggests the
SPLET (sequential proton loss electron transfer) mechanism
(Fig. 5). But on the other side, chloroform having much lower
dielectric constant (ca. 4.80) has less ability to ionize phenols,
therefore interaction between phenol and DPPH free radical occur
primarily by HAT (hydrogen atom transfer) mechanism (Fig. 5).
Slight better activity in ethanol than in chloroform is the conse-
quences of different pathways by which compounds interact with
DPPH radicals. SPLET or HAT mechanism both ultimately results in
the formation of same phenoxyl radical PhOÅ, therefore the stabil-
ization of this free radical finally decides the effect of different sub-
stitution on the antioxidant activity. Electron donating groups on
the ortho or para position of the benzene ring enhance the activity
by stabilization of the free radical, while electron withdrawing
groups decrease the antioxidant activity. The most active com-
Supplementary data
Supplementary data associated with this article can be found, in
the
online
version,
at
References and notes
1. Ames, N. B.; Shigenaga, M. K.; Hagen, T. M. Proc. Natl. Acad. Sci. U.S.A. 1993, 90,
7915.
2. Yin, H.; Xu, L.; Porter, N. A. Chem. Rev. 2011, 111, 594.
3. Burton, G. W.; Ingold, K. U. Acc. Chem. Res. 1986, 19, 194.
4. Wu, R. P.; Hayashi, T.; Cottam, H. B.; Jin, G.; Yao, S.; Wu, C. C. N.; Rosenbach, M.
D.; Corr, M.; Schwab, R. B.; Carson, D. A. Proc. Natl. Acad. Sci. U.S.A. 2010, 107,
7479.
5. Porter, F. D.; Scherrer, D. E.; Lanier, M. H.; Langmade, S. J.; Molugu, V.; Gale, S.
E.; Olzeski, D.; Sidhu, R.; Dietzen, D. J.; Fu, R.; Wassif, C. A.; Yanjanin, N. M.;
Marso, S. P.; House, J.; Vite, C.; Schaffer, J. E.; Ory, D. S. Sci. Transl. Med. 2010, 2,
56ra81.
6. Montine, T. J.; Montine, K. S.; McMahan, W.; Markesbery, W. R.; Quinn, J. F.;
Morrow, J. D. Antioxid. Redox Signal. 2005, 7, 269.
7. Berliner, J. A.; Heinecke, J. W. Free Radical Biol. Med. 1996, 20, 707.
8. Brewer, M. S. Compr. Rev. Food Sci. Food Safety 2011, 10, 221.
9. Sies Exp. Physiol. 1962, 82, 291.
10. Burton, G. W.; Doba, T.; Gabe, E. J.; Hughes, L.; Lee, F. L.; Prasad, L.; Ingold, K. U.
J. Am. Chem. Soc. 1985, 107, 7053.
11. Ismaili, H.; Milella, L.; Fkih-Tetouani, S.; Ilidrissi, A.; Camporese, A.; Sosa, S.;
Altinier, G.; Loggia, R. D.; Aquino, R. J. Ethnopharmacol. 2004, 91, 31.
12. Elhabazi, K.; Dicko, A.; Desor, F.; Dalal, A.; Younos, C.; Soulimani, R. J.
Ethnopharmacol. 2006, 103, 413.
pound 5r exhibited IC50 values 7.55 and 10.69 lg/mL in ethanol
and chloroform, respectively, by DPPH method.
The most active compounds (4k–4r, 5k–5r and 6k–6r) were
also studied for their antioxidant activity by ABTS method. ABTS
forms a stable radical cation on reaction with potassium persul-
phate after keeping for 12–16 h in dark. The antioxidant reduces
ABTSÅ+ to ABTS [2,20-azinobis-(3-ethylbenzothiazoline-6-sulfonic
acid)], which leads to decolourization of the blue green solution.
In this method an antioxidant is added to ABTS radical cation solu-
tion, and after a fixed time period, absorption of the remaining
ABTSÅ+ is observed at 734 nm.44–46 The decrease in absorption is
the measurement of antioxidant activity. ABTSÅ+ is more reactive
than DPPHÅ and the reaction of antioxidants with ABTSÅ+ involves
very fast electron transfer followed by proton transfer (ET–PT)
mechanism.47 Figure 7 shows the percentage antioxidant activity
13. Verma, R. S.; Padalia, R. C.; Chanotiya, C. S.; Chauhan, A. Nat. Prod. Res. 2010, 24,
1890.
14. Dababneh, B. F. J. Food Agric. Environ. 2007, 5, 158.
15. Didry, N.; Dubreuil, L.; Pinkas, M. Pharm. Acta Helv. 1994, 69, 25.
16. Mahmoud, A. L. Lett. Appl. Microbiol. 1994, 19, 110.
17. Ipek, E.; Ayaz, T. B.; Zeytinoglu, H. Cytotechnology 2003, 43, 145.
18. Ben Arfa, A.; Combes, S.; Preziosi-Bellov, L.; Gontard, N.; Chalier, P. Lett. Appl.
Microbiol. 2006, 43, 149.
19. Karkabounas, S.; Kostoula, O. K.; Daskalou, T.; Veltsistas, P.; Karamousis, M.;
Zelovitis, I.; Metsios, A.; Lekkas, P.; Evangelou, A. M.; Kotsis, N.; Skoufos, I. Exp.
Oncol. 2006, 28, 121.
20. Dandlen, S. A.; Lima, A. S.; Mendes, M. D.; Miguel, M. G.; Faleiro, M. L.; Sousa, M.
J.; Pedro, L. G.; Barroso, J. G.; Figueiredo, A. C. Flavour Frag. J. 2010, 25, 150.
21. Saad, A.; Fadli, M.; Bouaziz, M.; Benharref, A.; Mezrioui, N. E.; Hassani, L.
Phytomedicine 2010, 1057, 17.
22. Guimarães, A. G.; Xavier, M. A.; de Santana, M. T.; Camargo, E. A.; Santos, C. A.;
Brito, F. A.; Barreto, E. O.; Cavalcanti, S. C. H.; Antoniolli, A. R.; Oliveira, R. C. M.;
Quintans-Júnior, L. J. Naunyn Schmiedeberg’s Arch. Pharmacol. 2012, 385, 253.
23. Aeschbach, R.; Loliger, J.; Scott, B. C.; Murcia, A.; Butler, J.; Halliwell, B.;
Aruoma, O. I. Food Chem. Toxicol. 1994, 32, 31.
at 5 lg/mL of the compounds, 4k–4r, 5k–5r and 6k–6r by ABTS
radical cation method.
ABTSÅþ þ ArOH ! ABTS þ ArOÅ þ Hþ
24. Kruk, I.; Michalska, T.; Lichszteld, K.; Kladna, A.; Aboul-Enein, H. Y.
Chemosphere 2000, 41, 1059.
25. Alam, K.; Nagi, M. N.; Badary, O. A.; Al-Shabanah, O. A.; Al-Rikabi, A. C.; Al-
Bekairi, A. M. Pharmacol. Res. 1999, 40, 159.
26. Manohar, S.; Rajesh, U. C.; Khan, S. I.; Tekwani, B. L.; Rawat, D. S. ACS Med.
Chem. Lett. 2012, 3, 555.
27. Manohar, S.; Khan, S. I.; Rawat, D. S. Bioorg. Med. Chem. Lett. 2010, 20, 322.
28. Kumar, N.; Khan, S. I.; Beena; Rajalakshmi, G.; Kumaradhas, P.; Rawat, D. S.
Bioorg. Med. Chem. 2009, 17, 5632.
29. Kumar, N.; Khan, S. I.; Sharma, M.; Aethaya, H.; Rawat, D. S. Bioorg. Med. Chem.
Lett. 2009, 19, 1675.
30. Beena; Kumar, N.; Rohila, R. K.; Roy, N.; Rawat, D. S. Bioorg. Med. Chem. Lett.
2009, 19, 1396.
31. Atheaya, H.; Khan, S. I.; Mamgain, R.; Rawat, D. S. Bioorg. Med. Chem. Lett. 2008,
18, 1446.
In conclusion we have synthesized sixty three Schiff bases of
different substituted amino phenols (3a, 3b, 3c) and evaluated
them for their in vitro antioxidant activity by DPPH method. All
the compounds exhibited better activity than the parent com-
pounds (1a, 1b, 1c). Eight compounds showed excellent activity
even better than the reference (ascorbic acid) and compound 5r
was found to be the most potent with IC50 7.55 lg/mL. Antioxidant
activity data of selected compounds by DPPH and ABTS assays con-
firms the antioxidant potential of these compounds. The Schiff base
derivatives showed antioxidant property by two different