1070
T. K. Achar et al. / Tetrahedron Letters 54 (2013) 1067–1070
inconclusive results. It is shown in Figure S8 (SI) that –NH2 peak
ꢁ3550 cmÀ1 remains unchanged during the addition of Hg2+, fol-
lowed by methionine. Therefore, it is convincing that the nature
of IQ and Hg2+ association is same as it is proposed in Figure 3. Fur-
thermore, we have also demonstrated the possible structure of
IQ + Hg2+ + methionine. Addition of non-sulfur containing amino
acids like alanine, isoleucine, tryptophan etc. did not change the
emission behavior of IQ + Hg2+. Significantly, the addition of ethane
thiol (50 equiv) or dimethyl sulfide (70 equiv) to the solution of
IQ + Hg2+ led to an enhancement of emission intensity of IQ up
to ꢁ65% and ꢁ63%, respectively (Figs. S21, S22, in SI). However,
14 equiv of methionine was needed for >90% of recovery of emis-
sion intensity (Fig. 2) and also ethyl 2-mercaptoacetate (70 equiv)
did not alter the emission nature of IQ + Hg2+ (Fig. S23, in SI). These
facts clearly point not only toward the proposed structure of
IQ + Hg2+ + methionine complex is 8 (Fig. 3) but also the selective-
ness of methionine for IQ + Hg2+ system.
X-ray crystal structure analysis. The crystallographic data for
IQ+H++ClÀ complex have also been deposited with the Cambridge
Crystallographic Data Centre as entry CCDC 888629. These data
can be obtained free of charge from. The Cambridge Crystallo-
associated with this article can be found, in the online version, at
References and notes
1. Li, G.-Y.; Li, B.-G.; Yang, T.; Liu, G.-Y.; Zhang, G.-L. Org. Lett. 2006, 8, 3613–3615.
2. Ma, Z.-Z.; Xu, W.; Jensen, N. H.; Roth, B. L.; Liu-Chen, L.-Y.; Lee, D. Y. W.
Molecules 2008, 13, 2303–2312.
3. Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395–3442.
4. Todorovic, N.; Awuah, E.; Albu, S.; Ozimok, C.; Capretta, A. Org. Lett. 2011, 13,
6180–6183.
5. Cho, W.-J.; Min, S. Y.; Le, T. N.; Kim, T. S. Bioorg. Med. Chem. Lett. 2003, 13, 4451–
4454.
6. Saari, R.; Torma, J. C.; Nevalainen, T. Bioorg. Med. Chem. 2011, 19, 939–950.
7. Tamanini, E.; Flavin, K.; Motevalli, M.; Piperno, S.; Gheber, L. A.; Todd, M. H.;
Watkinson, M. Inorg. Chem. 2010, 49, 3789–3800.
8. Heitbaum, M.; Glorius, F.; Escher, I. Angew. Chem., Int. Ed. 2006, 45, 4732–4762.
9. Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987, 87, 779–794.
10. Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325–335.
11. Sammes, P. G. Tetrahedron 1976, 32, 405–422.
12. Chandra, K. L.; Saravanan, P.; Singh, R. K.; Singh, V. K. Tetrahedron 2002, 58,
1369–1374.
13. Lu, W.; Jiang, H.; Hu, F.; Jiang, L.; Shen, Z. Tetrahedron 2011, 67, 7909–7912.
14. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T.
Chem. Rev. 2011, 112, 1105–1125.
We have also performed proton migration31–33 studies with
IQ + H+ and Brønsted–Lowry bases (amines). Addition of either tri-
ethyl amine or diisopropyl amine to IQ + H+ led to full recovery of
emission intensities (Fig. S20, in SI) and that proves the migration
of proton takes place from IQ to amine bases. This indicates that
the isoquinoline–proton complex is also sensitive to Brønsted–
Lowry bases, not necessarily to fluoride ion until and unless selec-
tivity is considered among the anions (vide supra).
15. Thomas, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339–1386.
16. Xiang, H.; Zhou, L.; Feng, Y.; Cheng, J.; Wu, D.; Zhou, X. Inorg. Chem. 2012, 51,
5208–5212.
17. Schmittel, M.; Kalsani, V.; Kishore, R. S. K.; Coelfen, H.; Bats, J. W. J. Am. Chem.
Soc. 2005, 127, 11544–11545.
Therefore, from the analysis of spectroscopic data it can be
rationalized as, sequential addition of cations followed by anions
should open a way to turn on a molecular electronic function, thus
become helpful to be a promising strategy for the realization of in-
put controllable molecular switches. We could further demon-
strate that a single molecule was utilized to detect four different
ions or molecule in a rational way. Thus, on IQ, a prototype of
‘lab-on-a-molecule’34,35 was evidently established.
18. de Silva, A. P. Chem. Asian J. 2011, 6, 750–766.
19. Roehr, H.; Trieflinger, C.; Rurack, K.; Daub, J. Chem. Eur. J. 2006, 12, 689–700.
20. Li, A.-F.; Ruan, Y.-B.; Jiang, Q.-Q.; He, W.-B.; Jiang, Y.-B. Chem. Eur. J. 2010, 16,
5794–5802.
21. Yu, F.; Li, P.; Song, P.; Wang, B.; Zhao, J.; Han, K. Chem. Commun. 2012, 48,
4980–4982.
In conclusion, we have presented a novel methodology for the
direct synthesis of 1-amino-3-aryl isoquinoline from o-tolunitrile
derivative in a mild condition. It is also established that the IQ
has a potential to act as fluoride ion sensor among the anions in
the presence of H+ and methionine sensor in the presence of
Hg2+ via ON–OFF–ON molecular switch and clearly establishes a
‘lab-on-a-molecule’ model.
22. Miao, F.; Zhan, J.; Zou, Z.; Tian, D.; Li, H. Tetrahedron 2012, 68, 2409–2413.
23. Raatikainen, K.; Rissanen, K. Chem. Sci. 2012, 3, 1235–1239.
24. Jose, D. A.; Kar, P.; Koley, D.; Ganguly, B.; Thiel, W.; Ghosh, H. N.; Das, A. Inorg.
Chem. 2007, 46, 5576–5584.
25. Rajeswara, R. M.; Ravikanth, M. J. Org. Chem. 2011, 76, 3582–3587.
26. Hu, R.; Feng, J.; Hu, D.; Wang, S.; Li, S.; Li, Y.; Yang, G. Angew. Chem., Int. Ed.
2010, 49, 4915–4918.
27. Giese, M.; Albrecht, M.; Ivanova, G.; Valkonen, A.; Rissanen, K. Supramol. Chem.
2012, 24, 48–55.
28. Qu, Y.; Hua, J.; Tian, H. Org. Lett. 2010, 12, 3320–3323.
29. Jiang, Y.; Hu, X.; Hu, J.; Liu, H.; Zhong, H.; Liu, S. Macromolecules 2011, 44,
8780–8790.
Acknowledgments
30. Wang, H.; Xue, L.; Jiang, H. Org. Lett. 2011, 13, 3844–3847.
31. Medvedev, E. S.; Stuchebrukhov, A. A. J. Phys.: Condens. Matter 2011, 23,
234103.
32. Shmilovits-Ofir, M.; Gerber, R. B. J. Am. Chem. Soc. 2011, 133, 16510–16517.
33. Zatula, A. S.; Ryding, M. J.; Uggerud, E. Phys. Chem. Chem. Phys. 2012, 14, 13907–
13909.
We are thankful to DST (SERC, New Delhi; India) for financial
support, DST-INSPIRE (H.S.B. and V.P.) and UGC (T.K.A.) fellow-
ships. We are also thankful to Mr. Sudhir K. Das for fluorescence
lifetime measurements, Dr. C. S. Purohit for solving X-ray crystal
structure, and IMMT Bhubaneswar for elemental analysis.
34. Magri, D. C.; Brown, G. J.; McClean, G. D.; de Silva, A. P. J. Am. Chem. Soc. 2006,
128, 4950–4951.
35. Schmittel, M.; Qinghai, S. Chem. Commun. 2012, 48, 2707–2709.
Supplementary data
Supplementary data (the file contains the details of synthesis
procedure, photo-physical studies, theoretical calculations and