Journal of Medicinal Chemistry
Article
(2) Iwatsubo, T.; Odaka, A.; Suzuki, N.; Mizusawa, H.; Nukina, N.;
Ihara, Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with
end-specific Aβ monoclonals: evidence that an initially deposited
species is Aβ42(43). Neuron 1994, 13, 45−53.
(3) Tomita, T. Secretase inhibitors and modulators for Alzheimer’s
disease treatment. Expert Rev. Neurother. 2009, 9, 661−679.
(4) De Strooper, B.; Vassar, R.; Golde, T. The secretases: enzymes
with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol. 2010,
6, 99−107.
(5) Wolfe, M. S. γ-Secretase inhibitors and modulators for
Alzheimer’s disease. J. Neurochem. 2012, 120 (Suppl. 1), 89−98.
(6) Kreft, A. F.; Martone, R.; Porte, A. Recent advances in the
identification of γ-secretase inhibitors to clinically test the Aβ oligomer
hypothesis of Alzheimer’s disease. J. Med. Chem. 2009, 52, 6169−6188.
(7) Oehlrich, D.; Berthelot, D. J.-C.; Gijsen, H. J. M. γ-Secretase
modulators as potential disease modifying anti-Alzheimer’s drugs. J.
Med. Chem. 2011, 54, 669−698.
(8) Takasugi, N.; Tomita, T.; Hayashi, I.; Tsuruoka, M.; Niimura, M.;
Takahashi, Y.; Thinakaran, G.; Iwatsubo, T. The role of presenilin
cofactors in the γ-secretase complex. Nature 2003, 422, 438−441.
(9) Li, Y. M.; Xu, M.; Lai, M. T.; Huang, Q.; Castro, J. L.; DiMuzio-
Mower, J.; Harrison, T.; Lellis, C.; Nadin, A.; Neduvelil, J. G.; Register,
R. B.; Sardana, M. K.; Shearman, M. S.; Smith, A. L.; Shi, X. P.; Yin, K.
C.; Shafer, J. A.; Gardell, S. J. Photoactivated γ-secretase inhibitors
directed to the active site covalently label presenilin 1. Nature 2000,
405, 689−694.
(10) Xu, M.; Lai, M.-T.; Huang, Q.; DiMuzio-Mower, J.; Castro, J. L.;
Harrison, T.; Nadin, A.; Neduvelil, J. G.; Shearman, M. S.; Shafer, J. A.;
Gardell, S. J.; Li, Y.-M. γ-Secretase: characterization and implication for
Alzheimer disease therapy. Neurobiol. Aging 2002, 23, 1023−1030.
(11) Kornilova, A. Y.; Bihel, F.; Das, C.; Wolfe, M. S. The initial
substrate-binding site of γ-secretase is located on presenilin near the
active site. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3230−3235.
(12) Imamura, Y.; Watanabe, N.; Umezawa, N.; Iwatsubo, T.; Kato,
N.; Tomita, T.; Higuchi, T. Inhibition of γ-secretase activity by helical
β-peptide foldamers. J. Am. Chem. Soc. 2009, 131, 7353−7359.
(13) Fuwa, H.; Takahashi, Y.; Konno, Y.; Watanabe, N.; Miyashita,
H.; Sasaki, M.; Natsugari, H.; Kan, T.; Fukuyama, T.; Tomita, T.;
Iwatsubo, T. Divergent synthesis of multifunctional molecular probes
to elucidate the enzyme specificity of dipeptidic γ-secretase inhibitors.
ACS Chem. Biol. 2007, 2, 408−418.
(14) Morohashi, Y.; Kan, T.; Tominari, Y.; Fuwa, H.; Okamura, Y.;
Watanabe, N.; Sato, C.; Natsugari, H.; Fukuyama, T.; Iwatsubo, T.;
Tomita, T. C-terminal fragment of presenilin is the molecular target of
a dipeptidic γ-secretase-specific inhibitor DAPT (N-[N-(3,5-difluor-
ophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester. J. Biol. Chem.
2006, 281, 14670−14676.
(15) Haapasalo, A.; Kovacs, D. M. The many substrates of presenilin/
γ-secretase. J. Alzheimer’s Dis. 2011, 25, 3−28.
(16) Beel, A. J.; Sanders, C. R. Substrate specificity of γ-secretase and
other intramembrane proteases. Cell. Mol. Life Sci. 2008, 65, 1311−
1334.
(17) Searfoss, G. H.; Jordan, W. H.; Calligaro, D. O.; Galbreath, E. J.;
Schirtzinger, L. M.; Berridge, B. R.; Gao, H.; Higgins, M. A.; May, P.
C.; Ryan, T. P. Adipsin, a biomarker of gastrointestinal toxicity
mediated by a functional γ-secretase inhibitor. J. Biol. Chem. 2003, 278,
46107−46116.
(18) Wong, G. T.; Manfra, D.; Poulet, F. M.; Zhang, Q.; Josien, H.;
Bara, T.; Engstrom, L.; Pinzon-Ortiz, M.; Fine, J. S.; Lee, H.-J. J.;
Zhang, L.; Higgins, G. A.; Parker, E. M. Chronic treatment with the γ-
secretase inhibitor LY-411,575 inhibits β-amyloid peptide production
and alters lymphopoiesis and intestinal cell differentiation. J. Biol.
Chem. 2004, 279, 12876−12882.
(19) Gellman, S. H. Foldamers: a manifesto. Acc. Chem. Res. 1998,
31, 173−180.
(20) Seebach, D.; Beck, A. K.; Bierbaum, D. J. The world of β- and γ-
peptides comprised of homologated proteinogenic amino acids and
other components. Chem. Biodiversity 2004, 1, 1111−1239.
(21) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. β-Peptides: from
structure to function. Chem. Rev. 2001, 101, 3219−3232.
(22) Das, C.; Berezovska, O.; Diehl, T. S.; Genet, C.; Buldyrev, I.;
Tsai, J.-Y.; Hyman, B. T.; Wolfe, M. S. Designed helical peptides
inhibit an intramembrane protease. J. Am. Chem. Soc. 2003, 125,
11794−11795.
(23) Bihel, F.; Das, C.; Bowman, M. J.; Wolfe, M. S. Discovery of a
subnanomolar helical D-tridecapeptide inhibitor of γ-secretase. J. Med.
Chem. 2004, 47, 3931−3933.
(24) Karle, I. L.; Balaram, P. Structural characteristics of α-helical
peptide molecules containing Aib residues. Biochemistry 1990, 29,
6747−6756.
(25) Balaram, P. Non-standard amino acids in peptide design and
protein engineering. Curr. Opin. Struct. Biol. 1992, 2, 845−851.
(26) Porter, E. A.; Weisblum, B.; Gellman, S. H. Mimicry of host-
defense peptides by unnatural oligomers: antimicrobial β-peptides. J.
Am. Chem. Soc. 2002, 124, 7324−7330.
(27) Crisma, M.; Formaggio, F.; Moretto, A.; Toniolo, C. Peptide
helices based on α-amino acids. Biopolymers 2006, 84, 3−12.
(28) Barlow, D. J.; Thornton, J. M. Helix geometry in proteins. J. Mol.
Biol. 1988, 201, 601−619.
(29) Choi, S. H.; Guzei, I. a; Spencer, L. C.; Gellman, S. H.
Crystallographic characterization of 12-helical secondary structure in
β-peptides containing side chain groups. J. Am. Chem. Soc. 2010, 132,
13879−13885.
(30) Rabanal, F.; Ludevid, M. D.; Pons, M.; Giralt, E. CD of proline-
rich polypeptides: application to the study of the repetitive domain of
maize glutelin-2. Biopolymers 1993, 33, 1019−1028.
(31) Takahashi, Y.; Hayashi, I.; Tominari, Y.; Rikimaru, K.;
Morohashi, Y.; Kan, T.; Natsugari, H.; Fukuyama, T.; Tomita, T.;
Iwatsubo, T. Sulindac sulfide is a noncompetitive γ-secretase inhibitor
that preferentially reduces Aβ42 generation. J. Biol. Chem. 2003, 278,
18664−18670.
(32) LePlae, P. R.; Umezawa, N.; Lee, H. S.; Gellman, S. H. An
efficient route to either enantiomer of trans-2-aminocyclopentanecar-
boxylic acid. J. Org. Chem. 2001, 66, 5629−5632.
(33) Appella, D. H.; Christianson, L. A.; Klein, D. A.; Powell, D. R.;
Huang, X.; Barchi, J. J.; Gellman, S. H. Residue-based control of helix
shape in β-peptide oligomers. Nature 1997, 387, 381−384.
(34) Applequist, J.; Bode, K. A.; Appella, D. H.; Christianson, L. A.;
Gellman, S. H. Theoretical and experimental circular dichroic spectra
of the novel helical foldamer poly[(1R,2R)-trans-2-aminocyclopenta-
necarboxylic acid]. J. Am. Chem. Soc. 1998, 120, 4891−4892.
(35) Appella, D. H.; Christianson, L. A.; Klein, D. A.; Richards, M.
R.; Powell, D. R.; Gellman, S. H. Synthesis and structural
characterization of helix-forming β-peptides: trans-2-aminocyclopenta-
necarboxylic acid oligomers. J. Am. Chem. Soc. 1999, 121, 7574−7581.
(36) Dorman, G.; Prestwich, G. D. Benzophenone photophores in
biochemistry. Biochemistry 1994, 33, 5661−5673.
(37) Fluhrer, R.; Haass, C. Signal peptide peptidases and γ-secretase:
cousins of the same protease family? Neurodegener. Dis. 2007, 4, 112−
116.
(38) Nyborg, A. C.; Jansen, K.; Ladd, T. B.; Fauq, A.; Golde, T. E. A
signal peptide peptidase (SPP) reporter activity assay based on the
cleavage of type II membrane protein substrates provides further
evidence for an inverted orientation of the SPP active site relative to
presenilin. J. Biol. Chem. 2004, 279, 43148−43156.
(39) Weihofen, A.; Lemberg, M. K.; Friedmann, E.; Rueeger, H.;
Schmitz, A.; Paganetti, P.; Rovelli, G.; Martoglio, B. Targeting
presenilin-type aspartic protease signal peptide peptidase with γ-
secretase inhibitors. J. Biol. Chem. 2003, 278, 16528−16533.
(40) Sato, T.; Nyborg, A. C.; Iwata, N.; Diehl, T. S.; Saido, T. C.;
Golde, T. E.; Wolfe, M. S. Signal peptide peptidase: biochemical
properties and modulation by nonsteroidal antiinflammatory drugs.
Biochemistry 2006, 45, 8649−8656.
(41) Sato, T.; Ananda, K.; Cheng, C. I.; Suh, E. J.; Narayanan, S.;
Wolfe, M. S. Distinct pharmacological effects of inhibitors of signal
peptide peptidase and γ-secretase. J. Biol. Chem. 2008, 283, 33287−
33295.
1453
dx.doi.org/10.1021/jm301306c | J. Med. Chem. 2013, 56, 1443−1454