ChemComm
Communication
This work was partly supported by Grant-in-Aids for Scientific
Research (B) (no. 23350095) and (C) (no. 23550040) from JSPS, and
a
Grant-in-Aid for Scientific Research on Innovative Areas
(no. 20108007, ‘‘pi-Space’’) from MEXT. S.S. is also grateful to
Mitsubishi Chemical Corporation Fund for the financial support.
The authors thank Prof. Takeaki Iwamoto and Dr Shintaro Ishida,
Tohoku University for the X-ray measurements.
Fig. 2 UV/vis absorption (left) and fluorescence (right) spectra of 3a (light blue),
3b (green), and 3c (blue) in CHCl3.
Notes and references
‡ Crystallographic data for 3a: C44H50B2N6O2F4, Mw = 792.52, triclinic,
%
space group P1 (no. 2), a = 7.0735(15), b = 9.584(2), c = 15.633(3) Å, a =
101.780(3)1, b = 99.884(3)1, g = 98.418(3)1, V = 1003.8(4) Å3, Z = 1, rcalcd
=
1.311 g cmÀ3, T = À173(2) 1C, 4761 measured reflections, 3464 unique
reflections (Rint = 0.0150), R = 0.0364 (I > 2s(I)), Rw = 0.0939 (all data),
goodness-of-fit on |F|2 = 1.024, largest diff. peak/hole 0.198/À0.256 e Å3,
CCDC 96328. Crystallographic data for 3b: C48H50B2N6O2F4S2, Mw
=
%
904.68, triclinic, space group P1 (no. 2), a = 9.389(2), b = 11.178(3), c =
11.344(3) Å, a = 70.195(3)1, b = 81.592(3)1, g = 83.582(3)1, V =
1105.7(4) Å3, Z = 1, rcalcd = 1.359 g cmÀ3, T = À173(2) 1C, 10 421
measured reflections, 3888 unique reflections (Rint = 0.0424), R =
0.0423 (I > 2s(I)), Rw = 0.1179 (all data), goodness-of-fit on |F|2
=
1.044, largest diff. peak/hole 0.496/À0.240 e Å3, CCDC 96329. Crystal-
lographic data for 3c: C54H56B2N6O2F4Cl6, Mw = 1131.37, monoclinic,
space group C2/c (no. 15), a = 19.017(9), b = 14.773(7), c = 19.603(9) Å, b =
104.419(5)1, V = 5334(4) Å3, Z = 4, rcalcd = 1.409 g cmÀ3, T = À173(2) 1C,
24 331 measured reflections, 4705 unique reflections (Rint = 0.0465), R =
0.0545 (I > 2s(I)), Rw = 0.1731 (all data), goodness-of-fit on |F|2 = 1.084,
largest diff. peak/hole 0.500/À0.509 e Å3, CCDC 96330.
1 D. G. Farnum, G. Mehta, G. G. I. Moore and F. P. Siegal, Tetrahedron
Lett., 1974, 29, 2549.
2 (a) A. Iqbal, M. Jost, R. Kirchmayr, J. Pfenninger, A. Rochat and
O. Wallquist, Bull. Soc. Chim. Belg., 1988, 97, 615; (b) Z. M. Hao and
A. Iqbal, Chem. Soc. Rev., 1997, 26, 203; (c) J. S. Zambounis, Z. Hao
and A. Iqbal, Nature, 1997, 388, 131.
Fig. 3 Partial frontier molecular orbitals of 3a (left), 3b (middle), and 3c (right)
based on DFT calculation at the B3LYP/6-31G(d) level. p-Octyloxyphenyl
substituents were replaced by phenyl substituents for simplicity.
3 (a) L. Burgi, M. Turbiez, R. Pfeiffer, F. Bienewald, H. J. Kirner and
C. Winnewisser, Adv. Mater., 2008, 20, 2217; (b) M. Tantiwiwat,
A. Tamayo, N. Luu, X. D. Dang and T. Q. Nguyen, J. Phys. Chem. C,
2008, 112, 17402; (c) S. L. Suraru, U. Zschieschang, H. Klauk and
F. Wu¨rthner, Chem. Commun., 2011, 47, 1767.
4 Z. Qiao, Y. B. Xu, S. M. Lin, J. B. Peng and D. R. Cao, Synth. Met.,
2010, 160, 1544.
5 (a) S. Y. Qu, W. J. Wu, J. L. Hua, C. Kong, Y. T. Long and H. Tian,
J. Phys. Chem. C, 2010, 114, 1343; (b) F. L. Guo, S. Y. Qu, W. J. Wu,
J. Li, W. J. Ying and J. L. Hua, Synth. Met., 2010, 160, 1767.
6 (a) G. M. Fischer, A. R. Ehlers, A. Zumbusch and E. Daltrozzo, Angew.
Chem., Int. Ed., 2007, 46, 3750; (b) G. M. Fischer, M. Isomaki-
Krondahl, I. Gottker-Schnetmann, E. Daltrozzo and A. Zumbusch,
Chem.–Eur. J., 2009, 15, 4857; (c) G. M. Fischer, C. Jungst,
M. Isomaki-Krondahl, D. Gauss, H. M. Moller, E. Daltrozzo and
A. Zumbusch, Chem. Commun., 2010, 46, 5289; (d) G. M. Fischer,
M. K. Klein, E. Daltrozzo and A. Zumbusch, Eur. J. Org. Chem., 2011,
3421; (e) S. Wiktorowski, G. M. Fischer, M. J. Winterhalder,
E. Daltrozzo and A. Zumbusch, Phys. Chem. Chem. Phys., 2012,
14, 2921; ( f ) G. M. Fischer, E. Daltrozzo and A. Zumbusch, Angew.
Chem., Int. Ed., 2011, 50, 1406.
7 (a) A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891;
(b) A. Loudet and K. Burgess, in Handbook of Porphyrin Science,
ed. K. M. Kadish, K. M. Smith and R. Guilard, World Scientific
Publishing, Singapore, 2010, vol. 8, pp. 1–153.
8 (a) V. F. Donyagina, S. Shimizu, N. Kobayashi and E. A. Lukyanets,
Tetrahedron Lett., 2008, 49, 6152; (b) J. Killoran, L. Allen,
J. F. Gallagher, W. M. Gallagher and D. F. O’Shea, Chem. Commun.,
2002, 1862; (c) W. L. Zhao and E. M. Carreira, Angew. Chem., Int. Ed.,
2005, 44, 1677.
9 H. K. Hall, A. B. Padias, P. A. Williams, J. M. Gosau, H. W. Boone and
D. K. Park, Macromolecules, 1995, 28, 1.
10 M. J. Frisch, et al., Gaussian 09, Revision A.02, Gaussian, Inc.,
Wallingford, CT, 2009. See the ESI† for the full list of authors.
from 3a (2.20 eV) to 3b (2.16 eV) and 3c (2.10 eV),
which corresponds well to the red-shift of the lowest-energy
absorption in this order. These results indicate that the main
absorption bands of PPABs can be controlled by heteroaromatic
units, and that the extent of the shift of the absorption band
can be predicted by theoretical calculations.
In summary, novel PPABs have been synthesized from
DPP and heteroaromatic amines using titanium tetrachloride,
showing intense absorption in the lower-energy visible region
and emission with relatively high quantum yields. A significant
perturbation of the energy levels of the frontier orbitals by the
heteroaromatic units was inferred from the red-shift of the
main absorption bands of the PPABs with respect to those
units. In addition aryl substituents at the a-positions also
appear to play a crucial role in determining the energy levels of
the frontier orbitals due to the co-planarity to the pyrrolopyrrole
moieties. The absorption ranges of PPABs would be thus finely
tuned by changing both the heteroaromatic units and the sub-
stituents at the a-positions. Considering the facile syntheses of
PPABs and their future prospects for broader ranges of absorption
and emission in the visible and near-infrared regions, PPABs are
potential candidates not only in the fields of molecular electronics
and optoelectronics but also in the field of molecular probes, and
research along these directions is currently being undertaken in
our laboratory.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 1621--1623 1623