E. Burchacka et al. / Bioorg. Med. Chem. Lett. 23 (2013) 1412–1415
1415
Acknowledgments
This work was supported by Grants N N401 596340 (to J.O.)
from the Polish Ministry of Science and Higher Education. M.S. is
thankful to Wroclaw University of Technology Statute Funds
(S10156/0313).
Supplementary data
Supplementary data associated with this article can be found,
References and notes
1. Bejrano, P. A.; Langeveld, J. P.; Hudson, B. G.; Noelken, M. E. Infect. Immun. 1989,
57, 3783.
2. Molla, A.; Matsumoto, K.; Oyamada, J.; Katsuki, T.; Maeda, H. Infect. Immun.
1986, 53, 522.
Figure 1. Inhibition of V8-mediated hydrolysis of human IgG: molecular weight
marker (MWM, Lane 1); Control V8 and IgG samples (Lanes 2 and 6, respectively);
degradation of IgG by V8 protease (Lane 5); the inhibitory effect of 8a on IgG
degradation (Lane 4).
3. Sandholm, L.; Tolo, K. J. Clin. Periodontol. 1986, 13, 646.
4. Travis, J.; Potempa, J.; Maeda, H. Ternds Microbiol. 1995, 3, 1.
5. Potempa, J.; Travis, J. In Handbook of Experimental Pharmacology: Proteases as
Targets for Chemotherapy; von der Helm, K., Korant, B. D., Eds.; Springer-Verlag:
Berlin, 2000; pp 118–159.
6. Potempa, J.; Watorek, W.; Travis, J. J. Biol. Chem. 1986, 261, 14330.
7. Arvidson, S. Microbiology 2000, 8, 379.
8. Ryan, M. H.; Petrone, D.; Nemeth, J. F.; Barnathan, E.; Bjorck, L.; Jordan, R. E.
Mol. Immunol. 1837, 2008, 45.
9. Drapeau, G. R.; Boily, Y.; Houmard, J. J. Biol. Chem. 1972, 247, 6720.
10. Stennicke, H. R.; Breddam, K. In Handbook of Proteolytic Enzymes: Glutamyl
Endopeptidase; Barrett, A. J., Rawlings, N. D., Woessner, F. F., Eds.; Academic
Press: San Diego, 1998; pp 243–246.
11. Michaell, R. D.; Roberts Baum Clin. Microbiol. Rev. 2010, 3, 616.
12. Karlsson, A.; Saravia-Otten, P.; Tegmark, K.; Morfeldt, E.; Arvidson, S. Infect.
Immun. 2001, 69, 4742.
13. Maeda, H.; Yamamoto, T. Biol. Chem. 1996, 377, 217.
14. Hirasava, Y.; Taki, T.; Nakamura, T.; Mitsuishi, K.; Gunavan, H.; Suto, H. J. Invest.
Dermatol. 2008, 128, 906.
the same conditions. All samples were quenched by the addition of
non-reducing gel loading buffer and analyzed using SDS–PAGE (4–
12%). Visualization of the bands was performed via the silver stain-
ing method (Fig. 1).
The results clearly demonstrated that compound 8a prevents
V8-mediated IgG proteolysis. IgG incubated with V8 protease in
the absence of inhibitor undergoes proteolysis leading to formation
of a 30 kDa band which corresponds to the FC domain (monomer)
of IgG (Fig. 1, Lane 5). These observations are in agreement with
previously reported results.8 Addition of 8a efficiently prevents
IgG degradation due to the V8 inhibition (Fig. 1, Lane 4).
15. Oleksyszyn, J.; Powers, J. C. Biochem. Biophys. Res. Commun. 1989, 161, 143.
16. Oleksyszyn, J.; Powers, J. C. Biochemistry 1991, 30, 485.
17. Oleksyszyn, J.; Powers, J. C. In Methods in Enzymology; Abelson, J. N., Simon, M.
J., Barrett, A. J., Eds.; Academic Press: London, 1994; Vol. 244, pp 423–441.
18. Hamilton, R.; Walker, B.; Walker, J. B. Bioorg. Med. Chem. Lett. 1998, 8, 1655.
19. Kakudo, S.; Kikuchi, N.; Kitadokoro, K.; Fujiwara, T.; Nakamura, E.; Okamoto,
H.; Shin, M.; Tamaki, M.; Teraoka, H.; Tsuzuki, H. J. Biol. Chem. 1992, 267,
23782.
20. Abramowitz, N.; Schechter, J.; Berger, A. Biochem. Biophys. Res. Commun. 1967,
29, 862.
21. Knight, C. G. In Proteinase Inibitors; Barett, A. J., Salvesen, G., Eds.; Elsevier:
Amsterdam, 1986; pp 23–51.
22. Dubin, G.; Stec-Niemczyk, J.; Kisielewska, M.; Pustelny, K.; Popowicz, G.; Bista,
M.; Kantyka, T.; Boulware, K.; Stennicke, H. R.; Czarny, A.; Phopaisarn, M.;
Doughtry, P. S.; Thogerson, I. B.; Enghlid, J. J.; Thornberry, N.; Dubin, A.;
Potempa, J. J. Mol. Biol. 2008, 379, 343.
23. Winiarski, L.; Oleksyszyn, J.; Sienczyk, M. J. Med. Chem. 2012, 55, 6541.
24. Burchacka, E.; Walczak, M.; Sien´ czyk, M.; Oleksyszyn, J. Bioorg. Med. Chem. Lett.
2012, 22, 5574.
In order to examine the antibacterial activity of 8a the growth
inhibition assay was performed. The results indicated that synthe-
sized V8 inhibitor had no influence on Staphylococcus aureus
growth under the conditions of our assay in which gentamicin dis-
played MIC value of 2 mg/L. The obtained data was not surprising
since the activity of V8 protease is localized outside the cell. To
establish the true potency of 8a its activity needs to be examined
in vivo and will be the subject of further investigations.
In summary, the most potent among all synthesized peptidyl
derivatives of phosphonic glutamic acid was Boc-Phe-Leu-Glu-
P(OC6H5)2 (8a, k2/Ki = 8540 Mꢀ1 sꢀ1) being the most active phos-
phonic V8 inhibitor published to date. Moreover, the results
demonstrated that compound 8a prevents V8-mediated IgG degra-
dation in vitro. The presented preliminary data on new and selec-
tive inhibitors of V8 protease and it relationship to SplB protease
activity could help to establish its role in vivo during staphylococcal
infections, especially its influence on immune system dysfunction.