Mendeleev Commun., 2013, 23, 34–36
R1R2C=C(CN)2
9a,h
R1R2C=C(CN)2
9i,j
This work was partially supported by the Russian Foundation
for Basic Research (grant no. 09-03-01091) and the Program of
the Russian Academy of Sciences ‘Development of Methods for
Synthesizing Chemical Compounds and Creating New Materials’.
then CS2
then DMAD
[1a]
CO2Me
R2
R1
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.mencom.2013.01.012.
R2
R1
S
MeO2C
S
N
N
N
N
References
13a R1 = 2-thienyl, R2 = H,
conditions ii, 30%
14a R1 = 4-O2NC6H4, R2 = H,
conditions i, 40%
1 N. N. Makhova, A. V. Shevtsov and V. Yu. Petukhova, Usp. Khim., 2011,
80, 1087 (Russ. Chem. Rev., 2011, 80, 1035).
2 S. G. Zlotin and N. N. Makhova, Mendeleev Commun., 2010, 20, 63.
3 Yu. S. Syroeshkina, V. V. Kuznetsov, K. A. Lyssenko and N. N. Makhova,
Mendeleev Commun., 2008, 18, 42.
4 Yu. S. Syroeshkina,V.V. Kuznetsov, K.A. Lyssenko and N. N. Makhova,
Izv. Akad. Nauk, Ser. Khim., 2009, 362 (Russ. Chem. Bull., Int. Ed., 2009,
58, 366).
13b R1 + R2 = isatin-3-ylidene,
conditions i, 65%
14b R1 = 2-furyl, R2 = H,
conditions i, 30%
9a R1 = 4-O2NC6H4, R2 = H
9h R1 = 2-furyl, R2 = H
9i R1 = 2-thienyl, R2 = H
9j R1 + R2 = isatin-3-ylidene
5 Yu. S. Syroeshkina, I. V. Ovchinnikov, V. V. Kuznetsov, V. V. Kachala,
Yu. V. Nelyubina, K.A. Lyssenko and N. N. Makhova, Mendeleev Commun.
,
Scheme 5
2009, 19, 276.
6 Yu. S. Syroeshkina, L. L. Fershtat, V. V. Kachala, V. V. Kuznetsov and
N. N. Makhova, Izv. Akad. Nauk, Ser. Khim., 2010, 1579 (Russ. Chem.
Bull., Int. Ed., 2010, 59, 1621).
7 Yu. S. Syroeshkina, V. V. Kuznetsov, M. A. Epishina, M. I. Struchkova
and N. N. Makhova, Mendeleev Commun., 2008, 18, 207.
8 Yu. S. Syroeshkina, V. Yu. Petukhova, V. V. Kachala, Yu. V. Nelyubina
and N. N. Makhova, Izv. Akad. Nauk, Ser. Khim., 2010, 1401 (Russ. Chem.
Bull., Int. Ed., 2010, 59, 1433).
9 L. N. Jungheim and S. K. Sigmund, J. Org. Chem., 1987, 52, 4007.
10 L. N. Jungheim, Tetrahedron Lett., 1989, 30, 1889.
11 M. P. Clark, S. K. Laughlin, M. J. Laufersweiler, R. G. Bookland, T. A.
Brugel, A. Golobiowski, M. P. Sabat, J. A. Townes, J. C. VanRens,
J. F. Djung, M. G. Natehus, B. De, L. C. Hsieh, S. C. Xu, R. L. Walter,
M. J. Mekel, S. A. Heitmeyer, K. K. Brown, K. Juergens, Ye. O. Taiwo
and M. J. Janusz, J. Med. Chem., 2004, 47, 2724.
12 B. Kurosu, Japan. Patent 51133265 (A), 1977 (Chem. Abstr., 1977, 85,
63065a).
13 B. L. Walworth, US Patent 4091106 (A), 1978 (Chem. Abstr., 1978, 86,
16667j).
14 P.-J. Alarco, Ya. Abu-Lebdeh and M. Armand, Solid State Ionics, 2004,
175, 717.
15 N. N. Makhova, V. Yu. Petukhova and V. V. Kuznetsov, ARKIVOC, 2008,
fixed as bicyclic compounds 13a,b and 14a,b in rather high
yields (Scheme 5). In all cases arylidenemalononitrile 11a was
also isolated in high yield.
Compounds synthesized were separated by preparative column
chromatography on SiO2 and characterized by elemental and
spectral analysis data, primarily NMR using procedures such as
{1H-13C}HMBC, {1H-13C}HSQC, and mass spectrometry. The
structure of compound 14a was also confirmed by the X-ray
diffraction study (Figure 1).§
To conclude, the found approach for the azomethine imine
generation is a new contribution to the understanding of 1,3-dipolar
cycloreversion reactions and can be employed for synthesizing
other fused heterocyclic systems.
S(1)
S(2)
C(2)
O(1)
C(7)
C(8)
C(1)
C(9)
C(10)
N(3)
O(2)
C(6)
N(1)
C(11)
N(2)
C(3)
i, 128.
16 V. Yu. Petukhova, M. I. Pleshchev, L. L. Fershtat, V. V. Kuznetsov, V. V.
Kachala and N. N. Makhova, Mendeleev Commun., 2012, 22, 32.
17 J. B. Bastus, Tetrahedron Lett., 1963, 4, 955.
18 (a) A. P. Molchanov, D. I. Sipkin, Yu. B. Koptelov, J. Kopf and R. R.
Kostikov, Zh. Org. Khim., 2004, 40, 76 (Russ J. Org. Chem., 2004,
40, 67); (b) Yu. B. Koptelov, S. P. Saik and A. P. Molchanov, Khim.
Geterotsikl. Soedin., 2008, 1071[Chem. Heterocycl. Compd. (Engl.Transl.),
2008, 44, 860].
C(5)
C(4)
Figure 1 Molecular structure of compound 14a.
§
19 S. Ahmed, U. Sarmah, M. Longchar and J. S. Sandhu, Synth. Commun.,
Crystallographic data. Crystals of 14a (C11H11N3O2S2, M = 281.35) are
2000, 30, 771.
monoclinic, space group P21/c, at 100 K: a = 14.9197(7), b = 7.4169(4)
and c = 12.1107(6) Å, b = 113.8100(8)°, V = 1226.08(11) Å3, Z = 4 (Z’ = 1),
dcalc = 1.524 g cm–3, m(MoKa) = 4.31 cm–1, F(000) = 584. Intensities of
14132 reflections were measured with a Bruker SMART APEX2 CCD
diffractometer [l(MoKa) = 0.71072 Å, w-scans, 2q < 58°], and 3256
independent reflections (Rint = 0.0315) were used in further refinement.
The structure was solved by direct method and refined by the full-matrix
least-squares technique against F2 in the anisotropic-isotropic approxi-
mation. The hydrogen atoms were refined in the isotropic approximation
in riding model. The refinement converged to wR2 = 0.0833 and GOF =
= 1.003 for all independent reflections [R1 = 0.0320 was calculated against
F for 2763 observed reflections with I > 2s(I)]. All calculations were
performed using SHELXTL PLUS 5.0.21
20 (a) P. M. Sivakumar, S. P. Seenivasan, V. Kuman and M. Doble, Bioorg.
Med. Chem. Lett., 2010, 20, 3169; (b) F. Hayat, A. Salahuddin, S. Umar
and A.Azam, Eur. J. Med. Chem., 2010, 45, 4669; (c) S. Knode,V. Maddie,
P.Aragade, M. Palkar, P. K. Ronad, S. Mamledesai,A. H. M. Trippeswamy
and D. Satyanarayana, Eur. J. Med. Chem., 2009, 44, 1682; (d) R. S. Joshi,
P. G. Mandhane, S. D. Diwakar, S. K. Dabhade and C. H. Gill, Bioorg.
Med. Chem. Lett., 2010, 20, 3721; (e)Y. R. Prasad, A. L. Rao, L. Prasoona,
K. Murali and P. R. Kumar, Bioorg. Med. Chem. Lett., 2005, 15, 5030.
21 G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112.
CCDC 887393 contains the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The Cambridge
For details, see ‘Notice to Authors’, Mendeleev Commun., Issue 1, 2013.
Received: 27th July 2012; Com. 12/3962
– 36 –