10.1002/chem.201904623
Chemistry - A European Journal
FULL PAPER
[4]
J. Piccirilli, T. Krauch, S. E. Moroney, S. Benner, Nature 1990, 343,
33–37.
A. Rich, On the Problems of Evolution and Biochemical Information
Transfer, 1962.
(t, J = 2.6, 5.3 Hz, 1H, H-a), 2.08-2.06 (m, 2H, H-b), 1.95-1.93 (m, 2H, H-
e), 1.53-137 (m, 4H, H-c,d)
[5]
13C-NMR (126 MHz, DMSO-d6) δ [ppm] 158.9, 151.1, 138.9, 120.7, 117.4,
97.8, 94.9, 89.7, 86.0, 84.9, 84.8, 74.5, 74.4, 71.8, 71.2, 61.8, 27.9, 27.7,
27.5, 18.1, 17.9
[6]
Z. Yang, D. Hutter, P. Sheng, A. M. Sismour, S. A. Benner, Nucleic
Acids Res. 2006, 34, 6095–6101.
H. J. Kim, N. A. Leal, S. A. Benner, Bioorganic Med. Chem. 2009,
17, 3728–3732.
[7]
[8]
F. Eggert, S. Kath-Schorr, Chem. Commun. 2016, 7284, 7284–
7287.
ESI-MS: m/z calcd for C19H21N3O6 [M-H+]- 387,39; found: 386,23
[9]
C. Domnick, F. Eggert, S. Kath-Schorr, Chem. Commun. 2015, 51,
8253–8256.
[10]
[11]
[12]
[13]
[14]
[15]
[16]
F. Eggert, K. Kulikov, C. Domnick, P. Leifels, S. Kath-Schorr,
Methods 2017, 120, 17–27.
Synthesis of 5-(octa-1,7-diynyl)-7-(β-D-ribofuranosyl)-1,3,7-trihydro-
2H,4H-pyrrolo-[2,3-d]pyrimidin-2,4-dione TP (21)
C. Domnick, G. Hagelueken, F. Eggert, O. Schiemann, S. Kath-
Schorr, Org. Biomol. Chem. 2019, 17, 1805–1808.
E. Larsen, P. T. Jorgensen, M. A. Sofan, E. B. Pedersen, Synthesis
(Stuttg). 1994, DOI 10.1055/s-1994-25633.
M. A. Cameron, S. B. Cush, R. P. Hammer, J. Org. Chem. 1997, 62,
9065–9069.
M. Weinberger, F. Berndt, R. Mahrwald, N. P. Ernsting, H. A.
Wagenknecht, J. Org. Chem. 2013, 78, 2589–2599.
T. Kubelka, L. Slavětínská, B. Klepetářová, M. Hocek, European J.
Org. Chem. 2010, 2666–2669.
N. Joubert, R. Pohl, B. Klepetářová, M. Hocek, J. Org. Chem. 2007,
72, 6797–6805.
A. Häberli, C. J. Leumann, Org. Lett. 2001, 3, 489–492.
W. Saenger, Principles of Nucleic Acid Structure, p.21, Springer-
Verlag New York Inc., 1984.
Compound 20 (1 eq., 50 mg, 129 µmol) and freshly triturated proton
sponge (1.5 eq., 41.5 mg, 194 µmol) were dried in a predried Schlenk flask
overnight in an oil pump vacuum. It was the dissolved under an argon
atmosphere in 1,6 mL trimethyl phosphate (dried over a 4Å molecular
sieve for 4 days). The reaction solution was cooled to -7.5°C and freshly
distilled phosphorus oxychloride (1.05 eq., 12.7 µL, 136 µmol) was rapidly
added. After five hours, phosphorus oxychloride (0.4 eq., 4.8 µL,
51.6 µmol) was added again, and the reaction mixture was further stirred
for one hour. Then tributylamine (4.4 eq., 135 µL, 568 µmol) and 2.5 mL
of 0.4 M tributylamine pyrophosphate solution in dry DMF were added. The
mixture was further stirred at room temperature for 30 minutes. Next, the
reaction mixture was slowly added dropwise to a rapidly stirring solution of
0.1 M TEAB buffer (pH 8, 9.2 mL). The solution was hydrolyzed for eight
hours and the product 21 was isolated by RP-HPLC. The fractions
containing the desired product were lyophilized. 21 was isolated as a
colorless solid.
[17]
[18]
[19]
[20]
M. Singer, A. Nierth, A. Jäschke, European J. Org. Chem. 2013,
2766–2769.
F. Seela, X. Peng, Collect. Czechoslov. Chem. Commun. 2006, 71,
956–977.
F. Seela, X. Peng, J. Org. Chem. 2005, 81–90.
X. Peng, F. Seela, Nucleosides. Nucleotides Nucleic Acids 2007,
26, 603–606.
[21]
[22]
[23]
C. Weldon, I. Behm-Ansmant, L. H. Hurley, G. A. Burley, C.
Branlant, I. C. Eperon, C. Dominguez, Nat. Chem. Biol. 2017, 13,
18–20.
Yield: 13 mg (16%) (Figures S56-S59)
[24]
[25]
[26]
F. Seela, N. Ramzaeva, Helv. Chim. Acta 1995, 78, DOI
10.1002/hlca.19950780505.
F. Klepper, E. M. Jahn, V. Hickmann, T. Carell, Angew. Chemie -
Int. Ed. 2007, 46, 2325–2327.
F. Seela, M. Zulauf, Synthesis (Stuttg). 1995, 1, DOI 10.1055/s-
1996-4282.
J. Ludwig, F. Eckstein, J. Org. Chem. 1989, 19, 631–635.
M. Yoshikawa, T. Kato, T. Takenishi, Tetrahedron Lett. 1967, 5065–
5068.
J. Ludwig, Acta Biochim. Biophys. Acad. Sci. Hung. 1981, 16, 131–
3.
M. Merkel, S. Arndt, D. Ploschik, G. B. Cserép, U. Wenge, P. Kele,
H. A. Wagenknecht, J. Org. Chem. 2016, 81, 7527–7538.
J. F. Milligan, D. R. Groebe, G. W. Whherell, O. C. Uhlenbeck,
Nucleic Acids Res. 1987, 15, 8783–8798.
B. Fürtig, C. Richter, W. Bermel, H. Schwalbe, J. Biomol. NMR
2004, 28, 69–79.
S. Nozinovic, B. Fürtig, H. R. A. Jonker, C. Richter, H. Schwalbe,
Nucleic Acids Res. 2009, 38, 683–694.
H. Steinert, F. Sochor, A. Wacker, J. Buck, C. Helmling, F. Hiller, S.
Keyhani, J. Noeske, S. Grimm, M. M. Rudolph, et al., Elife 2017, 6,
1–18.
J. Buck, J. Noeske, J. Wöhnert, H. Schwalbe, Nucleic Acids Res.
2010, 38, 4143–4153.
J. Buck, B. Fürtig, J. Noeske, J. Wönert, H. Schwalbe, Proc. Natl.
Acad. Sci. U. S. A. 2007, 104, 15699–15704.
J. Noeske, J. Buck, B. Fürtig, H. R. Nasiri, H. Schwalbe, J. Wöhnert,
Nucleic Acids Res. 2007, 35, 572–583.
J. Singh, N. Steck, D. De, A. Hofer, A. Ripp, I. Captain, M. Keller, P.
A. Wender, R. Bhandari, H. J. Jessen, Angew. Chemie - Int. Ed.
2019, 58, 3928–3933.
J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair,
T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, et al.,
Nat. Methods 2012, 9, 676–682.
1H-NMR (600 MHz, D2O) δ [ppm] 7.89 (s, 1H, H-8), 6.08 (d, J = 6.5 Hz, 1H,
H-1’), 4.59 (t, J = 5.9 Hz, 1H, H-2’), 4.48 (dd, J = 3.3, 5.5 Hz, 1H, H-3’),
4.33-4.32 (m, 1H, H-4’), 4.28-4.24 (m, 2H, H-5’), 2.45 (t, J = 6.6 Hz, 1H, H-
a), 2.27-2.26 (m, 2H, H-b), 2.19-2.16 (m, 2H, H-e), 1.69-1.65 (m, 4H, H-
c,d)
[27]
[28]
31P-NMR (162 MHz, D2O) δ [ppm] -5.48 (d, 1P, γ-PO3 2-), -10.62 (d, 1P, α-
[29]
[30]
[31]
[32]
[33]
[34]
2-
PO3 2-), -18.88 (t, 1P, β-PO3
)
MALDI-MS: m/z calcd for C19H24N3O15P3 [M+Na+]+ 627,33; found:
650,0450.
Acknowledgements
We thank Oliver Binas and Dr. Christian Richter for support with
NMR experiments. The work was supported by DFG in
collaborative research center 902. The BMRZ is supported by
state of Hesse.
[35]
[36]
[37]
[38]
Keywords: Genetic code expansion • RNA • site-specific
labeling • NMR • fluorescence
[39]
[40]
[1]
[2]
[3]
Y. Zhang, J. L. Ptacin, E. C. Fischer, H. R. Aerni, C. E. Caffaro, K.
San Jose, A. W. Feldman, C. R. Turner, F. E. Romesberg, Nature
2017, 551, 644–647.
A. W. Feldman, V. T. Dien, R. J. Karadeema, E. C. Fischer, Y. You,
B. A. Anderson, R. Krishnamurthy, J. S. Chen, L. Li, F. E.
Romesberg, J. Am. Chem. Soc. 2019, 141, 10644–10653.
V. T. Dien, M. Holcomb, F. E. Romesberg, Biochemistry 2019, 58,
2581–2583.
C. Helmling, S. Keyhani, F. Sochor, B. Fürtig, M. Hengesbach, H.
Schwalbe, J. Biomol. NMR 2015, 63, 67–76.
V. Sklenář, A. Bax, J. Magn. Reson. 1987, 74, 469–479.
A. L. Breeze, Prog. Nucl. Magn. Reson. Spectrosc. 2000, 36, 323–
372.
[41]
[42]
[43]
J. Noeske, C. Richter, M. a Grundl, H. R. Nasiri, H. Schwalbe, J.
Wöhnert, Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 1372–1377.
This article is protected by copyright. All rights reserved.