ORGANIC
LETTERS
2013
Vol. 15, No. 5
1124–1127
A Formal Metal-Free N‑Arylation via the
Schmidt Reaction of Aromatic Aldehydes
with an Azido Amine
Peiming Gu,* Jian Sun, Xiao-Yan Kang, Ming Yi, Xue-Qiang Li, Ping Xue, and Rui Li
Key Laboratory of Energy Sources & Engineering, State Key Laboratory Cultivation
Base of Natural Gas Conversion and Department of Chemistry, Ningxia University,
Yinchuan 750021, China
Received January 28, 2013
ABSTRACT
A formal metal-free N-arylation of aromatic aldehydes with 3-azido-N-tosylpropan-1-amine through the Schmidt process was realized in the
presence of acids. TfOH was found to be a good promoter, and the exclusive 1,2-aryl migration was observed. Furthermore, the conversion of an
aliphatic aldehyde to the N,N-disubstituted formamide was achieved in excellent yield.
Aromatic amines play very important roles in the phar-
maceutical, material, and dye industries,1 which are usual-
ly made from the transition-metal-catalyzed arylation of
N-nucleophiles with aryl halides,2 arylboronic acids,3 or
arenes4 under strong basic conditions. Due to their im-
portance, continuous efforts have focused on the develop-
ment of a new type of aromatic coupling partners. For
example, the aryl carboxylic acids have been used for
copper-catalyzed decarboxylative N-arylation more recently.5
To the best of our knowledge, N-arylation of amines with
aromatic aldehydes through a similar conversion has not
been achieved. The nitrogen atom insertion into the CꢀC
bond between the benzene ring and carbonyl group might
be an alternative solution. The conversion of aldehydes to
one-carbon shorter amines through the Curtius rearran-
gement of acyl azides has been reported,6 and the acyl
azides were prepared in situ by oxidation of aldehydes in
the presence of azide. The expected products of the aryl-
migration Schmidt reaction of aryl aldehydes are aryl
amines, which is a sensible option to address this issue. In
this paper, we present an efficient method for the formal
N-arylation of 3-azido-N-tosylpropan-1-amine with aro-
matic aldehydes through the Schmidt process.
(1) For recent reviews, see: (a) Fisher, C.; Koenig, B. Beilstein J. Org.
Chem. 2011, 7, 59. (b) Hili, R.; Yudin, A. K. Nat. Chem. Biol. 2006, 2,
284.
(2) For selected examples, see: (a) Louie, J.; Hartwig, J. F. Tetra-
hedron Lett. 1995, 36, 3609. (b) Guram, A. S.; Rennels, R. A.; Buchwald,
S. L. Angew. Chem., Int. Ed. 1995, 34, 1348.
(3) For selected examples, see: (a) Lam, P. Y. S.; Clark, C. G.;
Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A.
Tetrahedron Lett. 1998, 39, 2941. (b) Chan, D. M. T.; Monaco, K. L.;
Wang, R.-P.; Winteres, M. P. Tetrahedron Lett. 1998, 39, 2933.
(4) For selected examples, see: (a) Tsang, W. C. P.; Zheng, M.;
Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560. (b) Thu, H.-Y.; Yu,
W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128, 9048. (c) Chen, X.; Hao,
X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790. (d)
Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.;
Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 16184. (e) Brasche, G.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932. (f) Mei, T.-S.;
Wang, X.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 10806.
(5) For selected examples, see: (a) Cho, C.-C.; Liu, J.-N.; Chien,
C.-H.; Shie, J.-J.; Chen, Y.-C.; Fang, J.-M. J. Org. Chem. 2009, 74, 1549.
(b) Jia, W.; Jiao, N. Org. Lett. 2010, 12, 2000. (c) Ju, L.; Bode, J. W.;
Toma, T.; Fukuyama, T. Org. Synth. 2010, 87, 218. (d) Zhang, Y.; Patel,
S.; Mainolfi, N. Chem. Sci. 2012, 3, 3196.
(6) (a) Vora, H. U.; Moncecchi, J. R.; Epstein, O.; Rovis, T. J. Org.
Chem. 2008, 73, 9727–9731. (b) Marinescu, L.; Thinggaard, J.; Thom-
sen, I. B.; Bols, M. J. Org. Chem. 2003, 68, 9453–9455.
(7) For two recently reviews on the Schmidt reaction of hydrazoic
ꢀ
acid or an alkyl azide with carbonyl compounds, see: (a) Aube, J. In
Organic Azides: Synthesis and Applications; Brase, S., Banert, K., Eds.;
Wiley: Weinheim, 2009; pp 191ꢀ237. (b) Wrobleski, A.; Coombs, T. C.;
ꢀ
Huh, C. W.; Li, S.-W.; Aube, J. Org. React. 2012, 78, 1–320.
(8) For an intramolecular Schmidt reaction of alkyl azides with acyl
chloride developed in our group, see: Gu, P.; Kang, X.-Y.; Sun, J.;
Wang, B.-J.; Yi, M.; Li, X.-Q.; Xue, P.; Li, R. Org. Lett. 2012, 14, 5796–
5799.
r
10.1021/ol400213f
Published on Web 02/20/2013
2013 American Chemical Society